Algebraic generalization

S. Watt
{"title":"Algebraic generalization","authors":"S. Watt","doi":"10.1145/1113439.1113452","DOIUrl":null,"url":null,"abstract":"We explore the notion of generalization in the setting of symbolic mathematical computing. By \"generalization\" we mean the process of taking a number of instances of mathematical expressions and producing new expressions that may be specialized to all the instances. We identify a number of ways in which generalization may be useful in the setting of computer algebra. We formalize this generalization as an antiunification problem.The process of antiunification is the dual of unification. It takes two expressions <i>E</i><inf>1</inf>, <i>E</i><inf>2</inf> ∈ <i>E</i> (Σ, <i>V</i>) and produces <i>E</i><inf>3</inf> ∈ <i>E</i> (Σ, <i>V</i>) such that there exist substitutions σ<inf>1</inf> and σ<inf>2</inf> such that σ<inf>1</inf> (<i>E</i><inf>3</inf>) = <i>E</i><inf>1</inf> and σ<inf>2</inf>(<i>E</i><inf>3</inf>) = <i>E</i><inf>2</inf>. We call the pair of substitutions an <i>antiunifier</i> and the resulting expression a <i>generalization</i> of the expressions. An antiunifier always exists, but is not necessarily unique. There is, however, a unique <i>most specific antiunifier</i> that places the most restrictions on the variables. This gives the <i>most specific generalization</i>, which is unique up to renaming of variables.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1113439.1113452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We explore the notion of generalization in the setting of symbolic mathematical computing. By "generalization" we mean the process of taking a number of instances of mathematical expressions and producing new expressions that may be specialized to all the instances. We identify a number of ways in which generalization may be useful in the setting of computer algebra. We formalize this generalization as an antiunification problem.The process of antiunification is the dual of unification. It takes two expressions E1, E2E (Σ, V) and produces E3E (Σ, V) such that there exist substitutions σ1 and σ2 such that σ1 (E3) = E1 and σ2(E3) = E2. We call the pair of substitutions an antiunifier and the resulting expression a generalization of the expressions. An antiunifier always exists, but is not necessarily unique. There is, however, a unique most specific antiunifier that places the most restrictions on the variables. This gives the most specific generalization, which is unique up to renaming of variables.
代数泛化
我们在符号数学计算的背景下探讨泛化的概念。通过“泛化”,我们指的是采用数学表达式的许多实例并产生可能专门适用于所有实例的新表达式的过程。我们确定了在计算机代数设置中泛化可能有用的一些方法。我们将这种推广形式化为一个反统一问题。反统一的过程是统一的对偶。取两个表达式E1, E2∈E (Σ, V),生成E3∈E (Σ, V),使得存在替换Σ 1和Σ 2,使得Σ 1 (E3) = E1和Σ 2(E3) = E2。我们称这对替换为反统一子,并将结果表达式称为表达式的泛化。一个反统一者总是存在的,但不一定是唯一的。然而,存在一个唯一的最具体的反统一子,它对变量施加了最多的限制。这给出了最具体的概括,这是唯一的重命名变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信