Cluster-Based Join for Geographically Distributed Big RDF Data

Fan Yang, Adina Crainiceanu, Zhiyuan Chen, Don Needham
{"title":"Cluster-Based Join for Geographically Distributed Big RDF Data","authors":"Fan Yang, Adina Crainiceanu, Zhiyuan Chen, Don Needham","doi":"10.1109/BigDataCongress.2019.00037","DOIUrl":null,"url":null,"abstract":"Federated RDF systems allow users to retrieve data from multiple independent sources without needing to have all the data in the same triple store. The performance of these systems can be poor for large and geographically distributed RDF data where network transfer costs are high. This paper introduces CBTP, a novel join algorithm that takes advantage of network topology to decrease the cost of processing SPARQL queries in a geographically distributed environment. Federation members are grouped in clusters, based on the network communication cost between the members, and the bulk of the join processing is pushed to the clusters. We use an overlap list to efficiently compute join results from triples in different clusters. We implement our algorithms in OpenRDF Sesame federated framework and use Apache Rya triple store instances as federation members. Experimental evaluation results show the advantages of our approach over existing techniques.","PeriodicalId":335850,"journal":{"name":"2019 IEEE International Congress on Big Data (BigDataCongress)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Congress on Big Data (BigDataCongress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2019.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Federated RDF systems allow users to retrieve data from multiple independent sources without needing to have all the data in the same triple store. The performance of these systems can be poor for large and geographically distributed RDF data where network transfer costs are high. This paper introduces CBTP, a novel join algorithm that takes advantage of network topology to decrease the cost of processing SPARQL queries in a geographically distributed environment. Federation members are grouped in clusters, based on the network communication cost between the members, and the bulk of the join processing is pushed to the clusters. We use an overlap list to efficiently compute join results from triples in different clusters. We implement our algorithms in OpenRDF Sesame federated framework and use Apache Rya triple store instances as federation members. Experimental evaluation results show the advantages of our approach over existing techniques.
基于集群的地理分布式大RDF数据连接
联邦RDF系统允许用户从多个独立的数据源检索数据,而不需要将所有数据放在同一个三重存储中。对于网络传输成本很高的大型和地理上分布的RDF数据,这些系统的性能可能很差。本文介绍了一种新的连接算法CBTP,它利用网络拓扑结构来降低在地理分布环境中处理SPARQL查询的成本。根据成员之间的网络通信成本,将联邦成员分组到集群中,并且将大量的连接处理推到集群中。我们使用重叠列表来有效地计算不同集群中三元组的连接结果。我们在OpenRDF Sesame联邦框架中实现算法,并使用Apache Rya三重存储实例作为联邦成员。实验评估结果表明,我们的方法优于现有的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信