Expected-likelihood covariance matrix estimation for adaptive detection

Y. Abramovich, N. Spencer
{"title":"Expected-likelihood covariance matrix estimation for adaptive detection","authors":"Y. Abramovich, N. Spencer","doi":"10.1109/RADAR.2005.1435902","DOIUrl":null,"url":null,"abstract":"We demonstrate that by adopting the new class of \"expected-likelihood\" (EL) covariance matrix estimates, instead of the traditional maximum-likelihood (ML) estimates, we can significantly enhance adaptive detection performance. These new estimates are found by searching within the properly parameterized class of admissible covariance matrices for the one that produces the likelihood ratio (LR) that is \"closest possible\" to the LR generated by the true (exact) covariance matrix.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We demonstrate that by adopting the new class of "expected-likelihood" (EL) covariance matrix estimates, instead of the traditional maximum-likelihood (ML) estimates, we can significantly enhance adaptive detection performance. These new estimates are found by searching within the properly parameterized class of admissible covariance matrices for the one that produces the likelihood ratio (LR) that is "closest possible" to the LR generated by the true (exact) covariance matrix.
自适应检测的期望似然协方差矩阵估计
我们证明,采用新的“期望似然”(EL)协方差矩阵估计,而不是传统的最大似然(ML)估计,可以显著提高自适应检测性能。这些新的估计是通过在适当参数化的可接受协方差矩阵类中搜索产生的似然比(LR)与真实(精确)协方差矩阵产生的LR“最接近”的似然比(LR)来找到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信