Feature importance methods unveiling the cross-sensitive response of an integrated sensor array to quantify major cations in drinking water

Gianmarco Gabrieli, Michal Muszynski, P. Ruch
{"title":"Feature importance methods unveiling the cross-sensitive response of an integrated sensor array to quantify major cations in drinking water","authors":"Gianmarco Gabrieli, Michal Muszynski, P. Ruch","doi":"10.1109/SENSORS52175.2022.9967157","DOIUrl":null,"url":null,"abstract":"A proof-of-concept system comprising a miniaturized sensor array, feature extraction and machine learning pipeline was evaluated for the direct quantification of the concentrations of three major cations, Ca2+, Mg2+, and Na+, in drinking water. Feature importance methods were applied to discover dependencies between the transient potentiometric responses of sensing materials and the cation concentrations. The proposed framework supports design of cross-sensitive sensor arrays to accelerate water testing, providing a complementary approach to traditional chemical analysis for monitoring water quality.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A proof-of-concept system comprising a miniaturized sensor array, feature extraction and machine learning pipeline was evaluated for the direct quantification of the concentrations of three major cations, Ca2+, Mg2+, and Na+, in drinking water. Feature importance methods were applied to discover dependencies between the transient potentiometric responses of sensing materials and the cation concentrations. The proposed framework supports design of cross-sensitive sensor arrays to accelerate water testing, providing a complementary approach to traditional chemical analysis for monitoring water quality.
特征重要性方法揭示了集成传感器阵列的交叉敏感响应,以量化饮用水中的主要阳离子
一个概念验证系统包括一个小型化的传感器阵列,特征提取和机器学习管道进行评估,以直接量化饮用水中三种主要阳离子,Ca2+, Mg2+和Na+的浓度。应用特征重要度方法发现感应材料的瞬态电位响应与阳离子浓度之间的依赖关系。提出的框架支持交叉敏感传感器阵列的设计,以加快水测试,为传统的化学分析监测水质提供了一种补充方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信