On minimal scalings of scalable frames

R. Domagalski, Y. Kim, S. Narayan
{"title":"On minimal scalings of scalable frames","authors":"R. Domagalski, Y. Kim, S. Narayan","doi":"10.1109/SAMPTA.2015.7148857","DOIUrl":null,"url":null,"abstract":"A tight frame in R<sup>n</sup> is a redundant system which has a reconstruction formula similar to that of an orthonormal basis. For a unit-norm frame F = {f<sub>i</sub>}<sup>k</sup><sub>i=1</sub>, a scaling is a vector c = (c(l),..., c(k)) ε R<sup>k</sup>≥0 such that {c(i)f<sub>i</sub>}<sup>k</sup><sub>i=1</sub> is a tight frame in R<sup>n</sup>. If a scaling c exists, we say that F is a scalable frame. A scaling c is a minimal scaling if {fi : c{i) > 0} has no proper scalable subframes. In this paper, we present the uniqueness of the orthogonal partitioning property of any set of minimal scalings and provide a construction of scalable frames by extending the standard orthonormal basis of R<sup>n</sup>.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A tight frame in Rn is a redundant system which has a reconstruction formula similar to that of an orthonormal basis. For a unit-norm frame F = {fi}ki=1, a scaling is a vector c = (c(l),..., c(k)) ε Rk≥0 such that {c(i)fi}ki=1 is a tight frame in Rn. If a scaling c exists, we say that F is a scalable frame. A scaling c is a minimal scaling if {fi : c{i) > 0} has no proper scalable subframes. In this paper, we present the uniqueness of the orthogonal partitioning property of any set of minimal scalings and provide a construction of scalable frames by extending the standard orthonormal basis of Rn.
可伸缩框架的最小缩放
Rn中的紧坐标系是一个冗余系统,其重构公式类似于标准正交基的重构公式。对于单位范数坐标系F = {fi}ki=1,标度是向量c = (c(l),…, c(k)) ε Rk≥0,使得{c(i)fi}ki=1是Rn中的紧坐标系。如果缩放c存在,我们说F是一个缩放坐标系。如果{fi: c{i) > 0}没有合适的可伸缩子帧,则缩放c是最小缩放。本文通过扩展Rn的标准正交基,给出了任意最小标度集的正交分划性质的唯一性,并给出了一个可伸缩框架的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信