The matching problem for bipartite graphs with polynomially bounded permanents is in NC

D. Grigoriev, Marek Karpinski
{"title":"The matching problem for bipartite graphs with polynomially bounded permanents is in NC","authors":"D. Grigoriev, Marek Karpinski","doi":"10.1109/SFCS.1987.56","DOIUrl":null,"url":null,"abstract":"It is shown that the problem of deciding and constructing a perfect matching in bipartite graphs G with the polynomial permanents of their n × n adjacency matrices A (perm(A) = nO(1)) are in the deterministic classes NC2 and NC3, respectively. We further design an NC3 algorithm for the problem of constructing all perfect matchings (enumeration problem) in a graph G with a permanent bounded by O(nk). The basic step was the development of a new symmetric functions method for the decision algorithm and the new parallel technique for the matching enumerator problem. The enumerator algorithm works in O(log3 n) parallel time and O(n3k+5.5 ¿ log n) processors. In the case of arbitrary bipartite graphs it yields an 'optimal' (up to the log n- factor) parallel time algorithm for enumerating all the perfect matchings in a graph. It entails also among other things an efficient NC3-algorithm for computing small (polynomially bounded) arithmetic permanents, and a sublinear parallel time algorithm for enumerating all the perfect matchings in graphs with permanents up to 2nε.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

Abstract

It is shown that the problem of deciding and constructing a perfect matching in bipartite graphs G with the polynomial permanents of their n × n adjacency matrices A (perm(A) = nO(1)) are in the deterministic classes NC2 and NC3, respectively. We further design an NC3 algorithm for the problem of constructing all perfect matchings (enumeration problem) in a graph G with a permanent bounded by O(nk). The basic step was the development of a new symmetric functions method for the decision algorithm and the new parallel technique for the matching enumerator problem. The enumerator algorithm works in O(log3 n) parallel time and O(n3k+5.5 ¿ log n) processors. In the case of arbitrary bipartite graphs it yields an 'optimal' (up to the log n- factor) parallel time algorithm for enumerating all the perfect matchings in a graph. It entails also among other things an efficient NC3-algorithm for computing small (polynomially bounded) arithmetic permanents, and a sublinear parallel time algorithm for enumerating all the perfect matchings in graphs with permanents up to 2nε.
研究了具有多项式有界永久值的二部图的匹配问题
证明了判定和构造二部图G中n × n邻接矩阵a (perm(a) = nO(1))的多项式永久项的完美匹配问题分别属于确定性类NC2和NC3。我们进一步设计了一个NC3算法,用于构造以O(nk)为界的永久图G上的所有完美匹配问题(枚举问题)。其基本步骤是为决策算法提出了一种新的对称函数方法,并为匹配枚举数问题提出了新的并行技术。枚举算法在O(log3n)并行时间和O(n3k+5.5¿log n)个处理器上工作。在任意二部图的情况下,它产生了一个“最优”(高达log n-因子)并行时间算法,用于枚举图中的所有完美匹配。除此之外,它还需要一个高效的nc3算法来计算小的(多项式有界的)算术永久值,以及一个次线性并行时间算法来枚举图中所有完美匹配的永久值,其最大值为2nε。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信