Improved autoregressive model

C. Amo-Quarm, M. Mezhoudi, K. Ravindran
{"title":"Improved autoregressive model","authors":"C. Amo-Quarm, M. Mezhoudi, K. Ravindran","doi":"10.1109/IZSBC.2002.991756","DOIUrl":null,"url":null,"abstract":"The autoregressive process has been used by several authors to model MPEG video traffic and attempts to capture the frame correlation as well as the Gaussian shape of the bit rate variation. However, the autoregressive process alone does not capture scene changes. In this paper, we propose an autoregressive model of order P, AR(P) + IAP (interrupted autoregressive process), to capture scene changes. We compare the model performance to that of the actual video trace, as well as the autoregressive process without scene changes.","PeriodicalId":336991,"journal":{"name":"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IZSBC.2002.991756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The autoregressive process has been used by several authors to model MPEG video traffic and attempts to capture the frame correlation as well as the Gaussian shape of the bit rate variation. However, the autoregressive process alone does not capture scene changes. In this paper, we propose an autoregressive model of order P, AR(P) + IAP (interrupted autoregressive process), to capture scene changes. We compare the model performance to that of the actual video trace, as well as the autoregressive process without scene changes.
改进的自回归模型
一些作者已经使用自回归过程来模拟MPEG视频流量,并试图捕获帧相关性以及比特率变化的高斯形状。然而,自回归过程本身并不能捕捉到场景的变化。本文提出了一种阶数为P、AR(P) + IAP(中断自回归过程)的自回归模型来捕捉场景变化。我们将模型的性能与实际视频跟踪的性能以及在没有场景变化的情况下的自回归过程进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信