Identifying Patterns of Breast Cancer Genetic Signatures using Unsupervised Machine Learning

R. Hamoudi, M. Bettayeb, Areej Alsaafin, M. Hachim, Q. Nasir, A. B. Nassif
{"title":"Identifying Patterns of Breast Cancer Genetic Signatures using Unsupervised Machine Learning","authors":"R. Hamoudi, M. Bettayeb, Areej Alsaafin, M. Hachim, Q. Nasir, A. B. Nassif","doi":"10.1109/IST48021.2019.9010510","DOIUrl":null,"url":null,"abstract":"Deploying machine learning to improve medical diagnosis is a promising area. The purpose of this study is to identify and analyze unique genetic signatures for breast cancer grades using publicly available gene expression microarray data. The classification of cancer types is based on unsupervised feature learning. Unsupervised clustering use matrix algebra based on similarity measures which made it suitable for analyzing gene expression. The main advantage of the proposed approach is the ability to use gene expression data from different grades of breast cancer to generate features that automatically identify and enhance the cancer diagnosis. In this paper, we tested different similarity measures in order to find the best way that identifies the sets of genes with a common function using expression microarray data.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Deploying machine learning to improve medical diagnosis is a promising area. The purpose of this study is to identify and analyze unique genetic signatures for breast cancer grades using publicly available gene expression microarray data. The classification of cancer types is based on unsupervised feature learning. Unsupervised clustering use matrix algebra based on similarity measures which made it suitable for analyzing gene expression. The main advantage of the proposed approach is the ability to use gene expression data from different grades of breast cancer to generate features that automatically identify and enhance the cancer diagnosis. In this paper, we tested different similarity measures in order to find the best way that identifies the sets of genes with a common function using expression microarray data.
使用无监督机器学习识别乳腺癌遗传特征模式
利用机器学习来改善医疗诊断是一个很有前途的领域。本研究的目的是利用公开的基因表达微阵列数据识别和分析乳腺癌等级的独特遗传特征。癌症类型的分类是基于无监督特征学习。无监督聚类使用基于相似性度量的矩阵代数,使其适合于分析基因表达。该方法的主要优点是能够使用来自不同级别乳腺癌的基因表达数据来生成自动识别和增强癌症诊断的特征。在本文中,我们测试了不同的相似性度量,以便找到使用表达微阵列数据识别具有共同功能的基因集的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信