MRAC-MU Online Learning

Siyun Zhang, Jian-wei Liu, Xin Zuo, X. Wan, M. Kamel
{"title":"MRAC-MU Online Learning","authors":"Siyun Zhang, Jian-wei Liu, Xin Zuo, X. Wan, M. Kamel","doi":"10.1109/ICARCV.2018.8581389","DOIUrl":null,"url":null,"abstract":"In this paper, we apply the method of control theory to machine learning, proposing a new multiplication update algorithm combined with adaptive control theory, we name it MRAC-MU algorithm. A new parameter updating law is obtained according to Lyapunov stability theorem. Using the same object function as the exponential gradient (EG) algorithm, which is the key online learning method to multiplicative updates algorithm, Experiments are used to validate the proposed algorithm has a better result than EG algorithm in prediction accuracy.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we apply the method of control theory to machine learning, proposing a new multiplication update algorithm combined with adaptive control theory, we name it MRAC-MU algorithm. A new parameter updating law is obtained according to Lyapunov stability theorem. Using the same object function as the exponential gradient (EG) algorithm, which is the key online learning method to multiplicative updates algorithm, Experiments are used to validate the proposed algorithm has a better result than EG algorithm in prediction accuracy.
MRAC-MU在线学习
本文将控制理论的方法应用到机器学习中,提出了一种结合自适应控制理论的乘法更新算法,我们将其命名为MRAC-MU算法。根据李雅普诺夫稳定性定理,得到了一种新的参数更新规律。利用与乘式更新算法的关键在线学习方法指数梯度(EG)算法相同的目标函数,通过实验验证了该算法在预测精度上优于EG算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信