Low-complexity sequential non-parametric signal classification for wideband cognitive radios

Mario Bkassiny, S. Jayaweera
{"title":"Low-complexity sequential non-parametric signal classification for wideband cognitive radios","authors":"Mario Bkassiny, S. Jayaweera","doi":"10.1109/TSSA.2014.7065908","DOIUrl":null,"url":null,"abstract":"This paper addresses the computational complexity of the Dirichlet process mixture model (DPMM)-based Bayesian non-parametric classifier in cognitive radios (CR's). The DPMM is an ideal signal classification tool for wideband CR's (W-CR's) due to its non-parametric structure. However, it can incur a high computational complexity since it usually requires a large number of Gibbs sampling iterations. To address this issue, we first propose a parameter selection policy that efficiently selects the cluster parameters at each Gibbs sampling iteration, leading to a faster convergence to the stationary distribution of the underlying Markov Chain Monte Carlo (MCMC). Next, we propose a sequential DPMM classifier based on a recursive formulation that allows real-time classification of newly detected signals. The proposed algorithms are shown to significantly reduce the computational burden of the DPMM-based classifier, making it suitable for both large-scale and real-time CR applications.","PeriodicalId":169550,"journal":{"name":"2014 8th International Conference on Telecommunication Systems Services and Applications (TSSA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Conference on Telecommunication Systems Services and Applications (TSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSA.2014.7065908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the computational complexity of the Dirichlet process mixture model (DPMM)-based Bayesian non-parametric classifier in cognitive radios (CR's). The DPMM is an ideal signal classification tool for wideband CR's (W-CR's) due to its non-parametric structure. However, it can incur a high computational complexity since it usually requires a large number of Gibbs sampling iterations. To address this issue, we first propose a parameter selection policy that efficiently selects the cluster parameters at each Gibbs sampling iteration, leading to a faster convergence to the stationary distribution of the underlying Markov Chain Monte Carlo (MCMC). Next, we propose a sequential DPMM classifier based on a recursive formulation that allows real-time classification of newly detected signals. The proposed algorithms are shown to significantly reduce the computational burden of the DPMM-based classifier, making it suitable for both large-scale and real-time CR applications.
宽带认知无线电低复杂度序列非参数信号分类
研究了认知无线电中基于Dirichlet过程混合模型(DPMM)的贝叶斯非参数分类器的计算复杂度。DPMM由于其非参数结构,是一种理想的宽带CR (W-CR)信号分类工具。然而,由于它通常需要大量的Gibbs采样迭代,因此会产生很高的计算复杂度。为了解决这个问题,我们首先提出了一种参数选择策略,该策略可以在每次Gibbs采样迭代中有效地选择聚类参数,从而更快地收敛到底层马尔可夫链蒙特卡罗(MCMC)的平稳分布。接下来,我们提出了一个基于递归公式的顺序DPMM分类器,该分类器允许对新检测到的信号进行实时分类。所提出的算法被证明可以显著减少基于dpmm的分类器的计算负担,使其适用于大规模和实时CR应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信