FPGA based soft sensor for the estimation of the kerosene freezing point

R. Caponetto, G. Dongola, A. Gallo, M. Xibilia
{"title":"FPGA based soft sensor for the estimation of the kerosene freezing point","authors":"R. Caponetto, G. Dongola, A. Gallo, M. Xibilia","doi":"10.1109/SIES.2009.5196219","DOIUrl":null,"url":null,"abstract":"A new strategy to realize an FPGA implementation of a soft sensor for an industrial process is proposed. In order to cope with the problem of small data sets in the identification of a non linear model the proposed approach is based on the integration of bootstrap re-sampling, noise injection and stacked neural networks (NNs), using the Principal Component Analysis (PCA). The aggregated final NN-PCA system has been implemented on Field Programmable Gate Array (FPGA). The proposed method has been applied to develop a soft sensor for the estimation of the freezing point of kerosene in an atmospheric distillation unit (topping) working in a refinery in Sicily, Italy.","PeriodicalId":133325,"journal":{"name":"2009 IEEE International Symposium on Industrial Embedded Systems","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Industrial Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2009.5196219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A new strategy to realize an FPGA implementation of a soft sensor for an industrial process is proposed. In order to cope with the problem of small data sets in the identification of a non linear model the proposed approach is based on the integration of bootstrap re-sampling, noise injection and stacked neural networks (NNs), using the Principal Component Analysis (PCA). The aggregated final NN-PCA system has been implemented on Field Programmable Gate Array (FPGA). The proposed method has been applied to develop a soft sensor for the estimation of the freezing point of kerosene in an atmospheric distillation unit (topping) working in a refinery in Sicily, Italy.
基于FPGA的煤油凝固点软测量
提出了一种基于FPGA实现工业过程软传感器的新策略。为了解决非线性模型识别中的小数据集问题,该方法基于自举重采样、噪声注入和堆叠神经网络(NNs)的集成,使用主成分分析(PCA)。在现场可编程门阵列(FPGA)上实现了聚合的最终神经网络-主成分分析系统。该方法已应用于意大利西西里岛某炼油厂常压蒸馏装置(顶盖)中煤油凝固点的软测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信