Real-time arbitrary video style transfer

Xingyu Liu, Zongxing Ji, Piao Huang, Tongwei Ren
{"title":"Real-time arbitrary video style transfer","authors":"Xingyu Liu, Zongxing Ji, Piao Huang, Tongwei Ren","doi":"10.1145/3444685.3446301","DOIUrl":null,"url":null,"abstract":"Video style transfer aims to synthesize a stylized video that has similar content structure with a content video and is rendered in the style of a style image. The existing video style transfer methods cannot simultaneously realize high efficiency, arbitrary style and temporal consistency. In this paper, we propose the first real-time arbitrary video style transfer method with only one model. Specifically, we utilize a three-network architecture consisting of a prediction network, a stylization network and a loss network. Prediction network is used for extracting style parameters from a given style image; Stylization network is for generating the corresponding stylized video; Loss network is for training prediction network and stylization network, whose loss function includes content loss, style loss and temporal consistency loss. We conduct three experiments and a user study to test the effectiveness of our method. The experimental results show that our method outperforms the state-of-the-arts.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Video style transfer aims to synthesize a stylized video that has similar content structure with a content video and is rendered in the style of a style image. The existing video style transfer methods cannot simultaneously realize high efficiency, arbitrary style and temporal consistency. In this paper, we propose the first real-time arbitrary video style transfer method with only one model. Specifically, we utilize a three-network architecture consisting of a prediction network, a stylization network and a loss network. Prediction network is used for extracting style parameters from a given style image; Stylization network is for generating the corresponding stylized video; Loss network is for training prediction network and stylization network, whose loss function includes content loss, style loss and temporal consistency loss. We conduct three experiments and a user study to test the effectiveness of our method. The experimental results show that our method outperforms the state-of-the-arts.
实时任意视频风格转换
视频风格转换旨在合成与内容视频具有相似内容结构的程式化视频,并以样式图像的样式呈现。现有的视频风格转换方法不能同时实现高效率、任意风格和时间一致性。在本文中,我们提出了第一种仅使用一个模型的实时任意视频风格传输方法。具体来说,我们利用了一个由预测网络、风格化网络和损失网络组成的三网络架构。使用预测网络从给定的样式图像中提取样式参数;风格化网络用于生成相应的风格化视频;损失网络用于训练预测网络和风格化网络,其损失函数包括内容损失、风格损失和时间一致性损失。我们进行了三个实验和一个用户研究来测试我们方法的有效性。实验结果表明,该方法优于目前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信