Uniform Continuity

J. Peterson
{"title":"Uniform Continuity","authors":"J. Peterson","doi":"10.1201/9781315166254-20","DOIUrl":null,"url":null,"abstract":"lim j→∞ xij = z. Let f : X → Y be a function with Y a metric space with metric ρ. We say that f is continuous at a point x0 ∈ X provided that for every > 0 there is a δ > 0 such that for every x ∈ X, if d(x, x0) < δ, then ρ(f(x), f(x0)) < . A function f : X → Y is said to be continuous provided that it is continuous at each point x ∈ X. A function f : X → Y is said to be uniformly continuous provided that for every > 0, there is a δ > 0 such that for every pair of points x and x′ in X, with d(x, x′) < δ, ρ(f(x), f(x′)) < . For a function f : X → Y to be uniformly continuous is stronger than being continuous.","PeriodicalId":130360,"journal":{"name":"Basic Analysis I","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Analysis I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315166254-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

lim j→∞ xij = z. Let f : X → Y be a function with Y a metric space with metric ρ. We say that f is continuous at a point x0 ∈ X provided that for every > 0 there is a δ > 0 such that for every x ∈ X, if d(x, x0) < δ, then ρ(f(x), f(x0)) < . A function f : X → Y is said to be continuous provided that it is continuous at each point x ∈ X. A function f : X → Y is said to be uniformly continuous provided that for every > 0, there is a δ > 0 such that for every pair of points x and x′ in X, with d(x, x′) < δ, ρ(f(x), f(x′)) < . For a function f : X → Y to be uniformly continuous is stronger than being continuous.
统一的连续性
lim j→∞xij = z,设f: X→Y是一个函数,Y是一个度量空间,具有度量ρ。我们说f在点x0∈X是连续的,条件是对于每一个> 0存在一个δ >,使得对于每一个X∈X,如果d(X, x0) < δ,则ρ(f(X), f(x0)) <。一个函数f: X→Y是连续的,只要它在每个点X∈X连续。一个函数f: X→Y是一致连续的,只要对每一个> 0,存在一个δ >,使得对于X中的每一对点X和X ', d(X, X ') < δ, ρ(f(X), f(X ')) <。对于函数f: X→Y是一致连续的比连续的要强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信