Face Recognition from Unconstrained Images: Progress with Prototypes

R. Jenkins, A. Burton, D. White
{"title":"Face Recognition from Unconstrained Images: Progress with Prototypes","authors":"R. Jenkins, A. Burton, D. White","doi":"10.1109/FGR.2006.45","DOIUrl":null,"url":null,"abstract":"Artificial face recognition systems typically do not attempt to handle very variable images. By comparison, human perceivers can recognize familiar faces over much more varied conditions. We describe a prototype face representation based on simple image-averaging. We have argued that this forms a good candidate for understanding human face perception. Here we examine the stability of these representations by asking (i) how quickly they converge; and (U) how resistant they are to contamination due to previous misidentifications. We conclude that face averages provide promising representations for use in artificial recognition","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Artificial face recognition systems typically do not attempt to handle very variable images. By comparison, human perceivers can recognize familiar faces over much more varied conditions. We describe a prototype face representation based on simple image-averaging. We have argued that this forms a good candidate for understanding human face perception. Here we examine the stability of these representations by asking (i) how quickly they converge; and (U) how resistant they are to contamination due to previous misidentifications. We conclude that face averages provide promising representations for use in artificial recognition
来自无约束图像的人脸识别:原型的进展
人工面部识别系统通常不会尝试处理非常多变的图像。相比之下,人类感知者可以在更多不同的条件下识别熟悉的面孔。我们描述了一个基于简单图像平均的原型人脸表示。我们认为,这形成了理解人类面部感知的一个很好的候选。在这里,我们通过询问(i)它们收敛的速度有多快来检验这些表示的稳定性;(U)由于之前的错误识别,它们对污染的抵抗力如何。我们得出结论,面部平均值为人工识别提供了有前途的表征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信