{"title":"Sizing of dual-VT gates for sub-VT circuits","authors":"B. Mohammadi, S. M. Y. Sherazi, J. Rodrigues","doi":"10.1109/SUBVT.2012.6404305","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to improve the performance of sub-threshold (sub-VT) gates in 65-nm CMOS technology. Faster transistors with a lower threshold voltage are introduced in the weaker network of a gate. It is shown that the employed method significantly enhances the reliability and performance of the gate, with an additive advantage of a lower area cost compared to traditional transistor sizing. Extensive Monte-Carlo simulations are carried out to verify the proposed optimization technique. The simulation results predict that the NAND3 and NOR3 testbench shows a 98% higher noise margin. Furthermore, the inverter and NAND3 gates show an speed improvement of 48% and 97%, respectively.","PeriodicalId":383826,"journal":{"name":"2012 IEEE Subthreshold Microelectronics Conference (SubVT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Subthreshold Microelectronics Conference (SubVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUBVT.2012.6404305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents a novel method to improve the performance of sub-threshold (sub-VT) gates in 65-nm CMOS technology. Faster transistors with a lower threshold voltage are introduced in the weaker network of a gate. It is shown that the employed method significantly enhances the reliability and performance of the gate, with an additive advantage of a lower area cost compared to traditional transistor sizing. Extensive Monte-Carlo simulations are carried out to verify the proposed optimization technique. The simulation results predict that the NAND3 and NOR3 testbench shows a 98% higher noise margin. Furthermore, the inverter and NAND3 gates show an speed improvement of 48% and 97%, respectively.