Tudásbázis hangolása a FRIQ-learning megerősítéses tanulási rendszerben

Tamás Tompa, Szilveszter Kovács
{"title":"Tudásbázis hangolása a FRIQ-learning megerősítéses tanulási rendszerben","authors":"Tamás Tompa, Szilveszter Kovács","doi":"10.32968/psaie.2022.4.4","DOIUrl":null,"url":null,"abstract":"A klasszikus megerősítéses tanulási rendszerekben a probléma megoldását leíró tudásbázis ismeretlen a tanulási folyamat kezdetén. Ezen módszerek többsége próbálkozás alapú keresést valósít meg, a környezet visszajelzései alapján térképezi fel a lehetséges megoldást. Azonban, ha rendelkezésre áll részinformáció a probléma megoldására vonatkozóan és az adaptálható a rendszerbe, akkor a tanulási folyamat hatékonysága javítható. A szakértői tudásbázissal bővített Fuzzy szabály-interpoláció alapú Q-tanulás (expert knowledge-included Fuzzy Rule Interpolation-based Q-learning) rendszerben előzetes szakértői információ (szakértői tudásbázis) állapot-akció típusú fuzzy szabályok formájában injektálható a rendszer tanulás folyamatába, amely által a módszer konvergencia sebessége javítható. Azonban, abban az esetben, ha az előzetes szakértői tudásbázis helytelen információkat tartalmaz a megoldásra vonatkozóan, akkor ez negatív hatással lehet a tanulási folyamat hatékonyságára. A cikk célja, egy olyan javasolt hangolási (optimalizálási) eljárás bemutatása, amely a tanulási folyamat során alkalmas lehet a helytelen információkat leíró szakértői fuzzy szabályrendszer hangolására, azaz a fuzzy szabályok állapot-akció pontjának optimalizálására.","PeriodicalId":117509,"journal":{"name":"Production Systems and Information Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Production Systems and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32968/psaie.2022.4.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A klasszikus megerősítéses tanulási rendszerekben a probléma megoldását leíró tudásbázis ismeretlen a tanulási folyamat kezdetén. Ezen módszerek többsége próbálkozás alapú keresést valósít meg, a környezet visszajelzései alapján térképezi fel a lehetséges megoldást. Azonban, ha rendelkezésre áll részinformáció a probléma megoldására vonatkozóan és az adaptálható a rendszerbe, akkor a tanulási folyamat hatékonysága javítható. A szakértői tudásbázissal bővített Fuzzy szabály-interpoláció alapú Q-tanulás (expert knowledge-included Fuzzy Rule Interpolation-based Q-learning) rendszerben előzetes szakértői információ (szakértői tudásbázis) állapot-akció típusú fuzzy szabályok formájában injektálható a rendszer tanulás folyamatába, amely által a módszer konvergencia sebessége javítható. Azonban, abban az esetben, ha az előzetes szakértői tudásbázis helytelen információkat tartalmaz a megoldásra vonatkozóan, akkor ez negatív hatással lehet a tanulási folyamat hatékonyságára. A cikk célja, egy olyan javasolt hangolási (optimalizálási) eljárás bemutatása, amely a tanulási folyamat során alkalmas lehet a helytelen információkat leíró szakértői fuzzy szabályrendszer hangolására, azaz a fuzzy szabályok állapot-akció pontjának optimalizálására.
在经典的强化学习系统中,描述问题解决方案的知识库在学习过程开始时是未知的。这些方法大多采用试错搜索法,根据环境反馈绘制可能的解决方案。不过,如果可以获得问题解决方案的部分信息,并将其与系统相匹配,则可以提高学习过程的效率。在包含专家知识的基于模糊规则插值的 Q-learning 系统中,先验专家信息(专家知识库)可以以状态-动作类型模糊规则的形式注入系统的学习过程,这可以提高方法的收敛速度。但是,如果先前的专家知识库包含错误的解法信息,则会对学习过程的效率产生负面影响。本文旨在提出一种拟议的调整(优化)程序,可用于调整学习过程中描述不正确信息的专家模糊规则系统,即优化模糊规则的状态作用点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信