Artificial mental phenomena: psychophysics as a framework to detect perception biases in AI models

Lizhen Liang, Daniel Ernesto Acuna
{"title":"Artificial mental phenomena: psychophysics as a framework to detect perception biases in AI models","authors":"Lizhen Liang, Daniel Ernesto Acuna","doi":"10.1145/3351095.3375623","DOIUrl":null,"url":null,"abstract":"Detecting biases in artificial intelligence has become difficult because of the impenetrable nature of deep learning. The central difficulty is in relating unobservable phenomena deep inside models with observable, outside quantities that we can measure from inputs and outputs. For example, can we detect gendered perceptions of occupations (e.g., female librarian, male electrician) using questions to and answers from a word embedding-based system? Current techniques for detecting biases are often customized for a task, dataset, or method, affecting their generalization. In this work, we draw from Psychophysics in Experimental Psychology---meant to relate quantities from the real world (i.e., \"Physics\") into subjective measures in the mind (i.e., \"Psyche\")---to propose an intellectually coherent and generalizable framework to detect biases in AI. Specifically, we adapt the two-alternative forced choice task (2AFC) to estimate potential biases and the strength of those biases in black-box models. We successfully reproduce previously-known biased perceptions in word embeddings and sentiment analysis predictions. We discuss how concepts in experimental psychology can be naturally applied to understanding artificial mental phenomena, and how psychophysics can form a useful methodological foundation to study fairness in AI.","PeriodicalId":377829,"journal":{"name":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351095.3375623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Detecting biases in artificial intelligence has become difficult because of the impenetrable nature of deep learning. The central difficulty is in relating unobservable phenomena deep inside models with observable, outside quantities that we can measure from inputs and outputs. For example, can we detect gendered perceptions of occupations (e.g., female librarian, male electrician) using questions to and answers from a word embedding-based system? Current techniques for detecting biases are often customized for a task, dataset, or method, affecting their generalization. In this work, we draw from Psychophysics in Experimental Psychology---meant to relate quantities from the real world (i.e., "Physics") into subjective measures in the mind (i.e., "Psyche")---to propose an intellectually coherent and generalizable framework to detect biases in AI. Specifically, we adapt the two-alternative forced choice task (2AFC) to estimate potential biases and the strength of those biases in black-box models. We successfully reproduce previously-known biased perceptions in word embeddings and sentiment analysis predictions. We discuss how concepts in experimental psychology can be naturally applied to understanding artificial mental phenomena, and how psychophysics can form a useful methodological foundation to study fairness in AI.
人工心理现象:在人工智能模型中检测感知偏差的心理物理学框架
由于深度学习的不可理解性,检测人工智能中的偏见变得很困难。核心困难在于如何将模型内部深层的不可观察现象与我们可以从输入和输出中测量的可观察的外部数量联系起来。例如,我们可以使用基于单词嵌入的系统的问答来检测职业的性别观念(例如,女性图书管理员,男性电工)吗?当前检测偏差的技术通常是针对任务、数据集或方法定制的,影响了它们的泛化。在这项工作中,我们借鉴了实验心理学中的心理物理学——意在将现实世界中的数量(即“物理”)与头脑中的主观测量(即“心理”)联系起来——提出了一个智力上连贯且可推广的框架,以检测人工智能中的偏见。具体来说,我们采用了两种选择的强制选择任务(2AFC)来估计黑盒模型中潜在的偏差和这些偏差的强度。我们成功地在词嵌入和情感分析预测中重现了先前已知的偏见感知。我们讨论了实验心理学中的概念如何自然地应用于理解人工心理现象,以及心理物理学如何为研究人工智能中的公平性形成有用的方法论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信