Frequentist model averaging for zero‐inflated Poisson regression models

Jianhong Zhou, Alan T. K. Wan, Dalei Yu
{"title":"Frequentist model averaging for zero‐inflated Poisson regression models","authors":"Jianhong Zhou, Alan T. K. Wan, Dalei Yu","doi":"10.1002/sam.11598","DOIUrl":null,"url":null,"abstract":"This paper considers frequentist model averaging for estimating the unknown parameters of the zero‐inflated Poisson regression model. Our proposed weight choice procedure is based on the minimization of an unbiased estimator of a conditional quadratic loss function. We prove that the resulting model average estimator enjoys optimal asymptotic property and improves finite sample properties over the two commonly used information‐based model selection estimators and their model average estimators via simulation studies. The proposed method is illustrated by a real data example.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers frequentist model averaging for estimating the unknown parameters of the zero‐inflated Poisson regression model. Our proposed weight choice procedure is based on the minimization of an unbiased estimator of a conditional quadratic loss function. We prove that the resulting model average estimator enjoys optimal asymptotic property and improves finite sample properties over the two commonly used information‐based model selection estimators and their model average estimators via simulation studies. The proposed method is illustrated by a real data example.
零膨胀泊松回归模型的频率模型平均
本文研究了零膨胀泊松回归模型未知参数估计的频率模型平均方法。我们提出的权重选择过程是基于一个条件二次损失函数的无偏估计的最小化。通过仿真研究,证明了所得到的模型平均估计量具有最优的渐近性,并改善了两种常用的基于信息的模型选择估计量及其模型平均估计量的有限样本性质。通过实际数据算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信