Stochastic load balancing and related problems

Ashish Goel, P. Indyk
{"title":"Stochastic load balancing and related problems","authors":"Ashish Goel, P. Indyk","doi":"10.1109/SFFCS.1999.814632","DOIUrl":null,"url":null,"abstract":"We study the problems of makespan minimization (load balancing), knapsack, and bin packing when the jobs have stochastic processing requirements or sizes. If the jobs are all Poisson, we present a two approximation for the first problem using Graham's rule, and observe that polynomial time approximation schemes can be obtained for the last two problems. If the jobs are all exponential, we present polynomial time approximation schemes for all three problems. We also obtain quasi-polynomial time approximation schemes for the last two problems if the jobs are Bernoulli variables.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"179","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 179

Abstract

We study the problems of makespan minimization (load balancing), knapsack, and bin packing when the jobs have stochastic processing requirements or sizes. If the jobs are all Poisson, we present a two approximation for the first problem using Graham's rule, and observe that polynomial time approximation schemes can be obtained for the last two problems. If the jobs are all exponential, we present polynomial time approximation schemes for all three problems. We also obtain quasi-polynomial time approximation schemes for the last two problems if the jobs are Bernoulli variables.
随机负载均衡及相关问题
我们研究了作业具有随机加工要求或尺寸时的最大作业时间最小化(负载平衡)、背包和装箱问题。如果作业都是泊松作业,我们利用Graham规则给出了第一个问题的二阶近似,并观察到后两个问题可以得到多项式时间近似格式。如果作业都是指数型的,我们给出了三个问题的多项式时间逼近方案。对于后两个问题,如果作业是伯努利变量,我们也得到了拟多项式时间逼近格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信