A Deep Learning Framework for Breast Tumor Detection and Localization from Microwave Imaging Data

Salwa K. Al Khatib, Tarek Naous, R. Shubair, H. M. E. Misilmani
{"title":"A Deep Learning Framework for Breast Tumor Detection and Localization from Microwave Imaging Data","authors":"Salwa K. Al Khatib, Tarek Naous, R. Shubair, H. M. E. Misilmani","doi":"10.1109/icecs53924.2021.9665521","DOIUrl":null,"url":null,"abstract":"Breast Microwave Imaging (BMI) has emerged as a viable alternative to conventional breast cancer screening techniques due to its favorable features and a higher rate of detection. This paper presents a deep learning framework consisting of deep neural networks with convolutional layers to facilitate the process of tumor detection, localization, and characterization from scattering parameter measurements and metadata features. The developed deep learning framework outperforms other techniques in the literature in terms of detection accuracy, tumor localization, and characterization. The promising results of this paper demonstrate the potential and benefits of performing BMI via deep neural networks trained on practical scattering parameter measurements.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Breast Microwave Imaging (BMI) has emerged as a viable alternative to conventional breast cancer screening techniques due to its favorable features and a higher rate of detection. This paper presents a deep learning framework consisting of deep neural networks with convolutional layers to facilitate the process of tumor detection, localization, and characterization from scattering parameter measurements and metadata features. The developed deep learning framework outperforms other techniques in the literature in terms of detection accuracy, tumor localization, and characterization. The promising results of this paper demonstrate the potential and benefits of performing BMI via deep neural networks trained on practical scattering parameter measurements.
基于微波成像数据的乳腺肿瘤检测与定位的深度学习框架
乳房微波成像(BMI)已成为一种可行的替代传统的乳腺癌筛查技术,由于其有利的特点和更高的检出率。本文提出了一个由具有卷积层的深度神经网络组成的深度学习框架,以促进从散射参数测量和元数据特征中进行肿瘤检测、定位和表征的过程。所开发的深度学习框架在检测精度、肿瘤定位和表征方面优于文献中的其他技术。本文的结果表明,通过实际散射参数测量训练的深度神经网络进行BMI的潜力和好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信