Full Body Person Identification Using the Kinect Sensor

Virginia O. Andersson, R. M. Araújo
{"title":"Full Body Person Identification Using the Kinect Sensor","authors":"Virginia O. Andersson, R. M. Araújo","doi":"10.1109/ICTAI.2014.99","DOIUrl":null,"url":null,"abstract":"Identifying individuals using biometric data is an important task in surveillance, authentication and even entertainment. This task is more challenging when required to be performed without physical contact and at a distance. Analyzing video footages from individuals for patterns is an active area of research aiming at fulfilling this goal. We describe results on classifiers trained to identify individuals from data collected from 140 subjects walking in front of a Microsoft Kinect sensor, which allows tracking 3D points representing a subject's skeleton. From this data we extract anthropometric and gait attributes to be used by the classifiers. We show that anthropometric features are more important than gait features but using both allows for higher accuracies. Additionally, we explore how different numbers of subjects and numbers of available examples affect accuracy, providing evidences on how effective the proposed methodology can be in different scenarios.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Identifying individuals using biometric data is an important task in surveillance, authentication and even entertainment. This task is more challenging when required to be performed without physical contact and at a distance. Analyzing video footages from individuals for patterns is an active area of research aiming at fulfilling this goal. We describe results on classifiers trained to identify individuals from data collected from 140 subjects walking in front of a Microsoft Kinect sensor, which allows tracking 3D points representing a subject's skeleton. From this data we extract anthropometric and gait attributes to be used by the classifiers. We show that anthropometric features are more important than gait features but using both allows for higher accuracies. Additionally, we explore how different numbers of subjects and numbers of available examples affect accuracy, providing evidences on how effective the proposed methodology can be in different scenarios.
使用Kinect传感器的全身人识别
利用生物特征数据识别个人在监控、身份验证甚至娱乐中都是一项重要任务。当需要在没有身体接触和一定距离的情况下完成这项任务时,这项任务更具挑战性。分析来自个人的视频片段的模式是一个活跃的研究领域,旨在实现这一目标。我们描述了经过训练的分类器的结果,这些分类器从140个在微软Kinect传感器前行走的受试者收集的数据中识别个体,该传感器允许跟踪代表受试者骨骼的3D点。从这些数据中,我们提取人体测量和步态属性,以供分类器使用。我们表明人体特征比步态特征更重要,但同时使用两者可以获得更高的准确性。此外,我们探讨了不同数量的主题和可用示例如何影响准确性,为所提出的方法在不同场景下的有效性提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信