Experimental Investigation Of Direct Drive Hydraulic Units Implemented In A Mining Loader

Aleksi Turunen, T. Minav, H. Hänninen, M. Pietola
{"title":"Experimental Investigation Of Direct Drive Hydraulic Units Implemented In A Mining Loader","authors":"Aleksi Turunen, T. Minav, H. Hänninen, M. Pietola","doi":"10.1109/GFPS.2018.8472393","DOIUrl":null,"url":null,"abstract":"The average mining loader is a diesel-hydraulic off- road mobile machine that is expected to routinely operate in enclosed areas. While traditional valve-controlled setups are common, there are other possible hydraulic systems that might grant benefits to such machines in addition to conventional hybridization. One avenue of improvement lies in electrification, which in itself is advantageous to underground mining machinery that would otherwise require extensive ventilation of their ICE exhaust. Electric power allows the application of direct pump control instead of conventional valve control, eliminating throttling losses. This is one possible method to achieve higher efficiencies when compared to conventional systems. This paper investigates the efficiency of a direct-driven hydraulic system for a mining loader, and compares it to a conventional load-sensing system that was previously installed in the same machine. The efficiency of the direct-driven system was determined to be superior in all tested cases, increasing from 21% to 53% at high velocity and from 2% to 22% at low velocity. In addition, the DDH system is capable of energy regeneration, recouping a portion of energy used for lifting thus allowing longer runtimes with a given battery capacity.","PeriodicalId":273799,"journal":{"name":"2018 Global Fluid Power Society PhD Symposium (GFPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Global Fluid Power Society PhD Symposium (GFPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GFPS.2018.8472393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The average mining loader is a diesel-hydraulic off- road mobile machine that is expected to routinely operate in enclosed areas. While traditional valve-controlled setups are common, there are other possible hydraulic systems that might grant benefits to such machines in addition to conventional hybridization. One avenue of improvement lies in electrification, which in itself is advantageous to underground mining machinery that would otherwise require extensive ventilation of their ICE exhaust. Electric power allows the application of direct pump control instead of conventional valve control, eliminating throttling losses. This is one possible method to achieve higher efficiencies when compared to conventional systems. This paper investigates the efficiency of a direct-driven hydraulic system for a mining loader, and compares it to a conventional load-sensing system that was previously installed in the same machine. The efficiency of the direct-driven system was determined to be superior in all tested cases, increasing from 21% to 53% at high velocity and from 2% to 22% at low velocity. In addition, the DDH system is capable of energy regeneration, recouping a portion of energy used for lifting thus allowing longer runtimes with a given battery capacity.
矿用装载机直接驱动液压装置的试验研究
一般的采矿装载机是一种柴油液压越野移动机器,预计在封闭区域常规操作。虽然传统的阀门控制装置很常见,但除了传统的混合动力装置外,还有其他可能的液压系统可以为这种机器带来好处。改进的一个途径在于电气化,电气化本身对地下采矿机械是有利的,否则地下采矿机械需要对其ICE废气进行广泛的通风。电力允许应用直接泵控制而不是传统的阀门控制,消除节流损失。与传统系统相比,这是实现更高效率的一种可能方法。本文研究了采矿装载机直接驱动液压系统的效率,并将其与以前安装在同一机器上的传统负载敏感系统进行了比较。在所有测试案例中,直接驱动系统的效率都被证明是优越的,在高速下从21%增加到53%,在低速下从2%增加到22%。此外,DDH系统具有能量再生能力,可以回收一部分用于提升的能量,从而在给定电池容量的情况下延长运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信