Microbial fermentation optimal control method based on improved particle swarm optimization

Yilin Liang
{"title":"Microbial fermentation optimal control method based on improved particle swarm optimization","authors":"Yilin Liang","doi":"10.1117/12.2671313","DOIUrl":null,"url":null,"abstract":"Microbial fermentation is a typical microbial fermentation process. Microbial bacteria ingest the nutrients of raw materials in the fermentation tank. Under appropriate conditions, enzymes in the body catalyze complex biochemical reactions to produce microorganisms. In order to guarantee the quality of modeling data and meet the accuracy, integrity, and consistency of data quality requirements, it needs to preprocess the input and output data. In this paper, the parameter model is solved by the particle swarm algorithm. Updating the parameter value of the next moment in real time constitutes a feedback correction to the prediction model. Theil inequality approach is adopted to test the tracking performance of the above model’s adaptive correction method. The Monte Carlo method is applied to generate multiple groups of different kinetic model values, which are substituted into the fermentation kinetic model as the real model parameter values. After the experimental analysis, the measured value of the model established by the method in this paper is closer to the predicted value, which has the effect of feedback correction and optimal control. The external conditions in the fermentation process are optimally controlled to achieve the effects of shortening the production period. It improves the yield of fermentation terminal target products and reduces the consumption of raw materials.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial fermentation is a typical microbial fermentation process. Microbial bacteria ingest the nutrients of raw materials in the fermentation tank. Under appropriate conditions, enzymes in the body catalyze complex biochemical reactions to produce microorganisms. In order to guarantee the quality of modeling data and meet the accuracy, integrity, and consistency of data quality requirements, it needs to preprocess the input and output data. In this paper, the parameter model is solved by the particle swarm algorithm. Updating the parameter value of the next moment in real time constitutes a feedback correction to the prediction model. Theil inequality approach is adopted to test the tracking performance of the above model’s adaptive correction method. The Monte Carlo method is applied to generate multiple groups of different kinetic model values, which are substituted into the fermentation kinetic model as the real model parameter values. After the experimental analysis, the measured value of the model established by the method in this paper is closer to the predicted value, which has the effect of feedback correction and optimal control. The external conditions in the fermentation process are optimally controlled to achieve the effects of shortening the production period. It improves the yield of fermentation terminal target products and reduces the consumption of raw materials.
基于改进粒子群优化的微生物发酵最优控制方法
微生物发酵是一种典型的微生物发酵过程。微生物细菌在发酵罐中摄取原料的营养物质。在适当的条件下,体内的酶催化复杂的生化反应,产生微生物。为了保证建模数据的质量,满足数据质量的准确性、完整性和一致性要求,需要对输入输出数据进行预处理。本文采用粒子群算法对参数模型进行求解。实时更新下一时刻的参数值构成对预测模型的反馈修正。采用他们的不等式方法来检验上述模型自适应校正方法的跟踪性能。采用蒙特卡罗方法生成多组不同的动力学模型值,作为实际模型参数值代入发酵动力学模型。经实验分析,本文方法建立的模型实测值更接近预测值,具有反馈校正和最优控制的效果。对发酵过程中的外部条件进行优化控制,达到缩短生产周期的效果。提高了发酵终端目标产品的产率,降低了原料的消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信