Optimal Objective Functional Selection for Image Reconstruction in Diffuse Optical Tomography

Amol V. Patil, S. Mukherji, U. Desai
{"title":"Optimal Objective Functional Selection for Image Reconstruction in Diffuse Optical Tomography","authors":"Amol V. Patil, S. Mukherji, U. Desai","doi":"10.1109/ICCTA.2007.98","DOIUrl":null,"url":null,"abstract":"Diffused optical tomography (DOT) is a powerful noninvasive functional imaging technique. Inter-parameter crosstalk and near source detector artifacts are major source of inaccuracies in DOT images. In this work we investigate the effect of various objective functional definitions and measurement types on performance of image reconstruction algorithm. Special attention is paid to measurement data types appropriate for handling experimental limitations and inaccuracies. We propose a method of selecting optimal objective functional by visualizing objective functionals in two parameter space using single inclusion DOT problem. Using our method we synthesize a new objective functional for our sample DOT problem. The proposed objective functionals provide minimum inter-parameter crosstalk with negligible near source detector artifacts. Limited memory quasi-Newtonian algorithm is used for image reconstruction. Synthetic data is used to demonstrate effect of various objective functionals on image reconstruction and the superiority of the proposed objective functional","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Diffused optical tomography (DOT) is a powerful noninvasive functional imaging technique. Inter-parameter crosstalk and near source detector artifacts are major source of inaccuracies in DOT images. In this work we investigate the effect of various objective functional definitions and measurement types on performance of image reconstruction algorithm. Special attention is paid to measurement data types appropriate for handling experimental limitations and inaccuracies. We propose a method of selecting optimal objective functional by visualizing objective functionals in two parameter space using single inclusion DOT problem. Using our method we synthesize a new objective functional for our sample DOT problem. The proposed objective functionals provide minimum inter-parameter crosstalk with negligible near source detector artifacts. Limited memory quasi-Newtonian algorithm is used for image reconstruction. Synthetic data is used to demonstrate effect of various objective functionals on image reconstruction and the superiority of the proposed objective functional
漫射光学断层成像图像重建的最优目标函数选择
扩散光学断层扫描(DOT)是一种强大的无创功能成像技术。参数间串扰和近源探测器伪影是DOT图像不准确的主要来源。在这项工作中,我们研究了各种目标函数定义和测量类型对图像重建算法性能的影响。特别注意测量数据类型适合处理实验限制和不准确性。提出了一种利用单包含DOT问题在两参数空间中可视化目标泛函来选择最优目标泛函的方法。利用该方法,我们为样本DOT问题合成了一个新的目标泛函。所提出的目标函数提供最小的参数间串扰和可忽略的近源检测器伪影。采用有限记忆准牛顿算法进行图像重建。利用合成数据验证了各种目标函数对图像重建的影响以及所提目标函数的优越性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信