Fusing global and regional features for image classification

Xiaohong Hu, Xu Qian
{"title":"Fusing global and regional features for image classification","authors":"Xiaohong Hu, Xu Qian","doi":"10.1109/CCDC.2009.5195270","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to image classification based on the fusion of global and regional features, which are helpful to describe image semantics to classification, in which vague sets for positive and negative evidences is applied to analyze and optimize the decisions obtained by multi-classifiers. Through integrating two sides of multiple classification decisions, the classification is optimized and synthesized, thus the processing and results will be both powerful and stable. Experimental results show that the performance of the classification is greatly improved.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5195270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach to image classification based on the fusion of global and regional features, which are helpful to describe image semantics to classification, in which vague sets for positive and negative evidences is applied to analyze and optimize the decisions obtained by multi-classifiers. Through integrating two sides of multiple classification decisions, the classification is optimized and synthesized, thus the processing and results will be both powerful and stable. Experimental results show that the performance of the classification is greatly improved.
融合全局和区域特征进行图像分类
本文提出了一种基于全局和区域特征融合的图像分类方法,该方法将正证据和负证据模糊集应用于多分类器得到的决策分析和优化,从而有助于图像语义的描述。通过整合多个分类决策的两个方面,对分类进行优化和综合,使处理和结果既强大又稳定。实验结果表明,该方法大大提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信