{"title":"More dynamic than expected: An updated survey of surging glaciers\nin the Pamir","authors":"F. Goerlich, T. Bolch, F. Paul","doi":"10.5194/essd-2020-79","DOIUrl":null,"url":null,"abstract":"Abstract. The investigation of surging glaciers using remote sensing has recently seen a strong increase as freely available satellite data and digital elevation models (DEMs) can provide detailed information about surges that often take place in remote or inaccessible regions. Apart from analysing individual surges, satellite information is increasingly used to collect capable data on surging glaciers. Related inventories have recently been published for several regions in High Mountain Asia including the Karakoram, parts of the Pamir and western Kunlun Shan, but information for the entire Pamir is solely available from a historic database listing about 80 glaciers with confirmed surges. Here we present an updated inventory of confirmed glacier surges for the Pamir that considers results from earlier studies and is based on a systematic analysis of Landsat image time series (1988 to 2018) and DEM differences. Actively surging glaciers were identified from animations, flicker images and the typical elevation change patterns. Selected historic and contemporary very high-resolution imagery were used to confirm surges. In total, we identified 206 spatially distinct surges within 186 glacier bodies, mostly clustered in the northern and central part of the Pamir. Where possible, minimum and maximum glacier extents were digitized, but often interacting tributaries made a clear separation challenging. Most surging glaciers (n = 70) are found in the larger size classes (> 10 km2), but two of them are very small ( https://doi.pangaea.de/10.1594/PANGAEA.914150 (Goerlich et al., 2020).","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/essd-2020-79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Abstract. The investigation of surging glaciers using remote sensing has recently seen a strong increase as freely available satellite data and digital elevation models (DEMs) can provide detailed information about surges that often take place in remote or inaccessible regions. Apart from analysing individual surges, satellite information is increasingly used to collect capable data on surging glaciers. Related inventories have recently been published for several regions in High Mountain Asia including the Karakoram, parts of the Pamir and western Kunlun Shan, but information for the entire Pamir is solely available from a historic database listing about 80 glaciers with confirmed surges. Here we present an updated inventory of confirmed glacier surges for the Pamir that considers results from earlier studies and is based on a systematic analysis of Landsat image time series (1988 to 2018) and DEM differences. Actively surging glaciers were identified from animations, flicker images and the typical elevation change patterns. Selected historic and contemporary very high-resolution imagery were used to confirm surges. In total, we identified 206 spatially distinct surges within 186 glacier bodies, mostly clustered in the northern and central part of the Pamir. Where possible, minimum and maximum glacier extents were digitized, but often interacting tributaries made a clear separation challenging. Most surging glaciers (n = 70) are found in the larger size classes (> 10 km2), but two of them are very small ( https://doi.pangaea.de/10.1594/PANGAEA.914150 (Goerlich et al., 2020).