Service Classification of Network Traffic in 5G Core Networks using Machine Learning

R. Pell, M. Shojafar, Dimitrios Kosmanos, S. Moschoyiannis
{"title":"Service Classification of Network Traffic in 5G Core Networks using Machine Learning","authors":"R. Pell, M. Shojafar, Dimitrios Kosmanos, S. Moschoyiannis","doi":"10.1109/EDGE60047.2023.00053","DOIUrl":null,"url":null,"abstract":"Fifth generation mobile networks (5G) leverage the power of edge computing to move vital services closer to end users. With critical 5G core network components located at the edge there is a need for detecting malicious signalling traffic to mitigate potential signalling attacks between the distributed Network Functions (NFs). A prerequisite for detecting anomalous signalling is a network traffic dataset for the identification and classification of normal traffic profiles. To this end, we utilise a 5G Core Network (5GC) simulator to execute test scenarios for different 5G procedures and use the captured network traffic to generate a dataset of normalised service interactions in the form of packet captures. We then apply machine learning techniques (supervised learning) and do a comparative analysis on accuracy, which uses three features from the traffic meta-data. Our results show that the identification of 5G service use by applying ML techniques offer a viable solution to classifying normal services from network traffic metadata alone. This has potential advantages in forecasting service demand for resource allocation in the dynamic 5GC environment and provide a baseline for performing anomaly detection of NF communication for detecting malicious traffic within the 5G Service Based Architecture (SBA).","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fifth generation mobile networks (5G) leverage the power of edge computing to move vital services closer to end users. With critical 5G core network components located at the edge there is a need for detecting malicious signalling traffic to mitigate potential signalling attacks between the distributed Network Functions (NFs). A prerequisite for detecting anomalous signalling is a network traffic dataset for the identification and classification of normal traffic profiles. To this end, we utilise a 5G Core Network (5GC) simulator to execute test scenarios for different 5G procedures and use the captured network traffic to generate a dataset of normalised service interactions in the form of packet captures. We then apply machine learning techniques (supervised learning) and do a comparative analysis on accuracy, which uses three features from the traffic meta-data. Our results show that the identification of 5G service use by applying ML techniques offer a viable solution to classifying normal services from network traffic metadata alone. This has potential advantages in forecasting service demand for resource allocation in the dynamic 5GC environment and provide a baseline for performing anomaly detection of NF communication for detecting malicious traffic within the 5G Service Based Architecture (SBA).
基于机器学习的5G核心网流量业务分类
第五代移动网络(5G)利用边缘计算的力量将重要服务更贴近最终用户。由于关键的5G核心网络组件位于边缘,因此需要检测恶意信令流量,以减轻分布式网络功能(NFs)之间的潜在信令攻击。检测异常信号的先决条件是用于识别和分类正常流量配置文件的网络流量数据集。为此,我们利用5G核心网络(5GC)模拟器执行不同5G过程的测试场景,并使用捕获的网络流量以数据包捕获的形式生成规范化服务交互的数据集。然后,我们应用机器学习技术(监督学习)并对准确性进行比较分析,其中使用了交通元数据中的三个特征。我们的研究结果表明,通过应用机器学习技术来识别5G服务使用情况,为仅从网络流量元数据中分类正常服务提供了一个可行的解决方案。这在预测动态5GC环境中资源分配的服务需求方面具有潜在的优势,并为执行NF通信异常检测提供基线,以检测5G基于服务的体系结构(SBA)中的恶意流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信