Optimization of Robot Paths Computed by Randomized Planners

S. Vougioukas
{"title":"Optimization of Robot Paths Computed by Randomized Planners","authors":"S. Vougioukas","doi":"10.1109/ROBOT.2005.1570431","DOIUrl":null,"url":null,"abstract":"Randomized path planners have been successfully used to compute feasible paths for difficult planning problems. Such paths are typically computed without taking into account any optimality criteria and may contain many “jagged” segments because of the randomness involved in their generation. This paper presents a two-phase path planning algorithm, which uses a randomized planner to compute low-cost paths, and gradient descent to locally optimize these paths by minimizing a Hamiltonian function. The algorithm is tested on motion planning for a non-holonomic car-like robot. The results indicate that the two-phase approach is practical; however, gradient descent seems to be inefficient for the optimization of long paths.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Randomized path planners have been successfully used to compute feasible paths for difficult planning problems. Such paths are typically computed without taking into account any optimality criteria and may contain many “jagged” segments because of the randomness involved in their generation. This paper presents a two-phase path planning algorithm, which uses a randomized planner to compute low-cost paths, and gradient descent to locally optimize these paths by minimizing a Hamiltonian function. The algorithm is tested on motion planning for a non-holonomic car-like robot. The results indicate that the two-phase approach is practical; however, gradient descent seems to be inefficient for the optimization of long paths.
机器人路径的随机规划优化
随机路径规划器已被成功地用于计算复杂规划问题的可行路径。这种路径的计算通常不考虑任何最优性标准,并且由于其生成的随机性,可能包含许多“锯齿”段。本文提出了一种两阶段路径规划算法,该算法使用随机规划器计算低成本路径,并使用梯度下降算法通过最小化哈密顿函数来局部优化这些路径。在非完整类车机器人的运动规划中对该算法进行了验证。结果表明,两阶段法是可行的;然而,对于长路径的优化,梯度下降似乎是低效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信