NLP based Machine Learning Approaches for Text Summarization

Rahul, Surabhi Adhikar, Monika
{"title":"NLP based Machine Learning Approaches for Text Summarization","authors":"Rahul, Surabhi Adhikar, Monika","doi":"10.1109/ICCMC48092.2020.ICCMC-00099","DOIUrl":null,"url":null,"abstract":"Due to the plethora of data available today, text summarization has become very essential to gain just the right amount of information from huge texts. We see long articles in news websites, blogs, customers’ review websites, and so on. This review paper presents various approaches to generate summary of huge texts. Various papers have been studied for different methods that have been used so far for text summarization. Mostly, the methods described in this paper produce Abstractive (ABS) or Extractive (EXT) summaries of text documents. Query-based summarization techniques are also discussed. The paper mostly discusses about the structured based and semantic based approaches for summarization of the text documents. Various datasets were used to test the summaries produced by these models, such as the CNN corpus, DUC2000, single and multiple text documents etc. We have studied these methods and also the tendencies, achievements, past work and future scope of them in text summarization as well as other fields.","PeriodicalId":130581,"journal":{"name":"2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Due to the plethora of data available today, text summarization has become very essential to gain just the right amount of information from huge texts. We see long articles in news websites, blogs, customers’ review websites, and so on. This review paper presents various approaches to generate summary of huge texts. Various papers have been studied for different methods that have been used so far for text summarization. Mostly, the methods described in this paper produce Abstractive (ABS) or Extractive (EXT) summaries of text documents. Query-based summarization techniques are also discussed. The paper mostly discusses about the structured based and semantic based approaches for summarization of the text documents. Various datasets were used to test the summaries produced by these models, such as the CNN corpus, DUC2000, single and multiple text documents etc. We have studied these methods and also the tendencies, achievements, past work and future scope of them in text summarization as well as other fields.
基于NLP的文本摘要机器学习方法
由于今天可用的数据过多,文本摘要对于从大量文本中获得适量的信息变得非常重要。我们在新闻网站、博客、客户评论网站等看到长篇文章。本文介绍了生成大型文本摘要的各种方法。各种各样的论文已经研究了不同的方法,已经使用到目前为止的文本摘要。大多数情况下,本文描述的方法产生文本文档的抽象(ABS)或提取(EXT)摘要。还讨论了基于查询的摘要技术。本文主要讨论了基于结构化和基于语义的文本文档摘要方法。使用各种数据集来测试这些模型生成的摘要,如CNN语料库、DUC2000、单个和多个文本文档等。我们对这些方法进行了研究,并对它们在文本摘要等领域的发展趋势、取得的成果、过去的工作和未来的范围进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信