Maximum rectilinear convex subsets

H. González-Aguilar, David Orden, P. Pérez-Lantero, D. Rappaport, C. Seara, J. Tejel, J. Urrutia
{"title":"Maximum rectilinear convex subsets","authors":"H. González-Aguilar, David Orden, P. Pérez-Lantero, D. Rappaport, C. Seara, J. Tejel, J. Urrutia","doi":"10.1137/19M1303010","DOIUrl":null,"url":null,"abstract":"Let $P$ be a set of $n$ points in the plane. We consider a variation of the classical Erdős-Szekeres problem, presenting efficient algorithms with $O(n^3)$ running time and $O(n^2)$ space complexity that compute: (1) A subset $S$ of $P$ such that the boundary of the rectilinear convex hull of $S$ has the maximum number of points from $P$, (2) a subset $S$ of $P$ such that the boundary of the rectilinear convex hull of $S$ has the maximum number of points from $P$ and its interior contains no element of $P$, (3) a subset $S$ of $P$ such that the rectilinear convex hull of $S$ has maximum area and its interior contains no element of $P$, and (4) when each point of $P$ is assigned a weight, positive or negative, a subset $S$ of $P$ that maximizes the total weight of the points in the rectilinear convex hull of $S$.","PeriodicalId":335412,"journal":{"name":"International Symposium on Fundamentals of Computation Theory","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Fundamentals of Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/19M1303010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Let $P$ be a set of $n$ points in the plane. We consider a variation of the classical Erdős-Szekeres problem, presenting efficient algorithms with $O(n^3)$ running time and $O(n^2)$ space complexity that compute: (1) A subset $S$ of $P$ such that the boundary of the rectilinear convex hull of $S$ has the maximum number of points from $P$, (2) a subset $S$ of $P$ such that the boundary of the rectilinear convex hull of $S$ has the maximum number of points from $P$ and its interior contains no element of $P$, (3) a subset $S$ of $P$ such that the rectilinear convex hull of $S$ has maximum area and its interior contains no element of $P$, and (4) when each point of $P$ is assigned a weight, positive or negative, a subset $S$ of $P$ that maximizes the total weight of the points in the rectilinear convex hull of $S$.
最大直线凸子集
设P是平面上n个点的集合。我们考虑了经典Erdős-Szekeres问题的一个变体,提出了具有$O(n^3)$运行时间和$O(n^2)$空间复杂度的高效算法,计算:(1)的一个子集S P,美元的美元直线的边界凸包的年代有最大数量的美元从$ P $点,(2)一个子集S P,美元的美元直线的边界凸包的年代有最大数量的美元从$ P $ $ P $及其内部不包含的元素,(3)的一个子集S $ P $(美元直线凸包的年代最大的地区,其内部包含美元没有$ P $的元素,和(4)当每个$ P $被分配一个权重,正的或负的,P$的一个子集$S$,它使$S$的直线凸包中的点的总重量最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信