Kink recognition with neural networks

G. Stimpfl-Abele
{"title":"Kink recognition with neural networks","authors":"G. Stimpfl-Abele","doi":"10.1109/NSSMIC.1992.301445","DOIUrl":null,"url":null,"abstract":"The task of finding decays of charged tracks inside a tracking device is divided into two parts. First, a neural network is used to recognize kinks in well-constructed tracks. The inputs to this classification network are the residuals and the curvature obtained by a one-track fit. If a kink has been found, the same inputs are fed into a second neural network, which gives the radial position of the decay vertex. Both algorithms use feedforward nets with error backpropagation. Very good performance is found in comparison with conventional methods.<<ETX>>","PeriodicalId":447239,"journal":{"name":"IEEE Conference on Nuclear Science Symposium and Medical Imaging","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Nuclear Science Symposium and Medical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1992.301445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The task of finding decays of charged tracks inside a tracking device is divided into two parts. First, a neural network is used to recognize kinks in well-constructed tracks. The inputs to this classification network are the residuals and the curvature obtained by a one-track fit. If a kink has been found, the same inputs are fed into a second neural network, which gives the radial position of the decay vertex. Both algorithms use feedforward nets with error backpropagation. Very good performance is found in comparison with conventional methods.<>
用神经网络识别扭结
在跟踪装置中寻找带电轨道衰变的任务分为两个部分。首先,使用神经网络识别构造良好的轨道中的扭结。该分类网络的输入是残差和单轨拟合得到的曲率。如果发现了一个拐点,同样的输入被输入到第二个神经网络中,这个神经网络给出了衰减顶点的径向位置。这两种算法都使用带有误差反向传播的前馈网络。与传统方法相比,该方法具有很好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信