Stochastic Optimization and Risk Problems for Engineering Applications

Ştefan Colbu, D. Popescu, Daniel Băncilă, Mihaela-Ancuta Mone, Alina Petrescu-Nita
{"title":"Stochastic Optimization and Risk Problems for Engineering Applications","authors":"Ştefan Colbu, D. Popescu, Daniel Băncilă, Mihaela-Ancuta Mone, Alina Petrescu-Nita","doi":"10.1109/CoDIT55151.2022.9803976","DOIUrl":null,"url":null,"abstract":"In this paper a technique of handling Gaussian stochastic optimization problems is presented. These optimization problems are experienced in various industrial processes, where random disturbances take action directly on the constraints defining the operational process domain and on the parameters of the criterion function. The objective of our scientific work aims to find a solution to the stochastic problem reformulated as an equivalent deterministic optimization problem with totally admissible solutions. This problem is referred to as a risk problem, and it is handled using nonlinear mathematical programming approaches and represents the optimal decision for efficient exploitation of the industrial applications. A numerical Gaussian stochastic optimization case study for an optimal solar energy system exploitation is considered to validate the theoretical results.","PeriodicalId":185510,"journal":{"name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT55151.2022.9803976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper a technique of handling Gaussian stochastic optimization problems is presented. These optimization problems are experienced in various industrial processes, where random disturbances take action directly on the constraints defining the operational process domain and on the parameters of the criterion function. The objective of our scientific work aims to find a solution to the stochastic problem reformulated as an equivalent deterministic optimization problem with totally admissible solutions. This problem is referred to as a risk problem, and it is handled using nonlinear mathematical programming approaches and represents the optimal decision for efficient exploitation of the industrial applications. A numerical Gaussian stochastic optimization case study for an optimal solar energy system exploitation is considered to validate the theoretical results.
工程应用中的随机优化与风险问题
本文提出了一种处理高斯随机优化问题的方法。这些优化问题在各种工业过程中都遇到过,其中随机干扰直接作用于定义操作过程域的约束和准则函数的参数。我们科学工作的目标是找到随机问题的解,将其重新表述为具有完全可接受解的等效确定性优化问题。这个问题被称为风险问题,它是用非线性数学规划方法来处理的,它代表了有效利用工业应用的最优决策。最后以数值高斯随机优化太阳能系统开发为例,对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信