An Efficient Parallel Implementation of a Perfect Hashing Method for Hypergraphs

Somesh Singh, B. Uçar
{"title":"An Efficient Parallel Implementation of a Perfect Hashing Method for Hypergraphs","authors":"Somesh Singh, B. Uçar","doi":"10.1109/IPDPSW55747.2022.00056","DOIUrl":null,"url":null,"abstract":"Querying the existence of an edge in a given graph or hypergraph is a building block in several algorithms. Hashing-based methods can be used for this purpose, where the given edges are stored in a hash table in a preprocessing step, and then the queries are answered using the lookup operations. While the general hashing methods have fast lookup times in the average case, the worst case run time is much higher. Perfect hashing methods take advantage of the fact that the items to be stored are all available and construct a collision free hash function for the given input, resulting in an optimal lookup time even in the worst case. We investigate an efficient shared-memory parallel implementation of a recently proposed perfect hashing method for hypergraphs. We experimentally compare the resulting parallel algorithms with the state-of-the-art and demonstrate better run time and scalability on a set of hypergraphs corresponding to real-life sparse tensors.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Querying the existence of an edge in a given graph or hypergraph is a building block in several algorithms. Hashing-based methods can be used for this purpose, where the given edges are stored in a hash table in a preprocessing step, and then the queries are answered using the lookup operations. While the general hashing methods have fast lookup times in the average case, the worst case run time is much higher. Perfect hashing methods take advantage of the fact that the items to be stored are all available and construct a collision free hash function for the given input, resulting in an optimal lookup time even in the worst case. We investigate an efficient shared-memory parallel implementation of a recently proposed perfect hashing method for hypergraphs. We experimentally compare the resulting parallel algorithms with the state-of-the-art and demonstrate better run time and scalability on a set of hypergraphs corresponding to real-life sparse tensors.
超图完美哈希方法的高效并行实现
查询给定图或超图中某条边的存在性是许多算法的构建块。基于哈希的方法可用于此目的,其中在预处理步骤中将给定的边存储在哈希表中,然后使用查找操作回答查询。虽然一般的散列方法在平均情况下具有快速查找时间,但在最坏情况下运行时间要高得多。完美的散列方法利用了要存储的所有项都是可用的这一事实,并为给定的输入构造了一个无冲突的散列函数,即使在最坏的情况下也能获得最佳的查找时间。我们研究了最近提出的超图完美哈希方法的高效共享内存并行实现。我们通过实验将得到的并行算法与最先进的算法进行比较,并在一组对应于现实稀疏张量的超图上展示了更好的运行时间和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信