From Concept to Implementation: The Data-Centric Development Process for AI in Industry

Paul-Philipp Luley, Jan Deriu, Peng Yan, Gerrit A. Schatte, Thilo Stadelmann
{"title":"From Concept to Implementation: The Data-Centric Development Process for AI in Industry","authors":"Paul-Philipp Luley, Jan Deriu, Peng Yan, Gerrit A. Schatte, Thilo Stadelmann","doi":"10.1109/SDS57534.2023.00017","DOIUrl":null,"url":null,"abstract":"We examine the paradigm of data-centric artificial intelligence (DCAI) as a solution to the obstacles that small and medium-sized enterprises (SMEs) face in adopting AI. While the prevalent model-centric approach emphasizes collecting large amounts of data, SMEs often suffer from small datasets, data drift, and sparse ML knowledge, which hinders them from implementing AI. DCAI, on the other hand, emphasizes to systematically engineer the data used to build an AI system. Our contribution is to provide a concrete, transferable implementation of a DCAI development process geared towards industrial application, specffically in machining and manufacturing, and demonstrate how it enhances data quality by fostering collaboration between domain experts and ML engineers. This added value can place AI at the disposal of more SMEs. We provide the necessary background for practitioners to follow the rationale behind DCAI and successfully deploy the provided process template.","PeriodicalId":150544,"journal":{"name":"2023 10th IEEE Swiss Conference on Data Science (SDS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 10th IEEE Swiss Conference on Data Science (SDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDS57534.2023.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We examine the paradigm of data-centric artificial intelligence (DCAI) as a solution to the obstacles that small and medium-sized enterprises (SMEs) face in adopting AI. While the prevalent model-centric approach emphasizes collecting large amounts of data, SMEs often suffer from small datasets, data drift, and sparse ML knowledge, which hinders them from implementing AI. DCAI, on the other hand, emphasizes to systematically engineer the data used to build an AI system. Our contribution is to provide a concrete, transferable implementation of a DCAI development process geared towards industrial application, specffically in machining and manufacturing, and demonstrate how it enhances data quality by fostering collaboration between domain experts and ML engineers. This added value can place AI at the disposal of more SMEs. We provide the necessary background for practitioners to follow the rationale behind DCAI and successfully deploy the provided process template.
从概念到实现:以数据为中心的工业人工智能开发过程
我们研究了以数据为中心的人工智能(DCAI)范式,以解决中小企业(SMEs)在采用人工智能时面临的障碍。虽然流行的以模型为中心的方法强调收集大量数据,但中小企业经常遭受小数据集、数据漂移和稀疏的ML知识的困扰,这阻碍了他们实施人工智能。另一方面,DCAI强调系统地设计用于构建人工智能系统的数据。我们的贡献是为面向工业应用的DCAI开发过程提供一个具体的、可转移的实现,特别是在加工和制造方面,并展示它如何通过促进领域专家和机器学习工程师之间的协作来提高数据质量。这种附加值可以让更多的中小企业使用人工智能。我们为从业者提供必要的背景知识,以遵循DCAI背后的基本原理,并成功地部署所提供的过程模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信