Deep Learning for Prediction of Population of Acetes in Avoiding Biological Hazards for Nuclear Power Plants

Li Dai, Rongyong Zhang, S. Huang, Junyi Liu, Qi Li, Zhen Zhang, Xinshu Jiang, Zengchang Qin
{"title":"Deep Learning for Prediction of Population of Acetes in Avoiding Biological Hazards for Nuclear Power Plants","authors":"Li Dai, Rongyong Zhang, S. Huang, Junyi Liu, Qi Li, Zhen Zhang, Xinshu Jiang, Zengchang Qin","doi":"10.1109/IHMSC55436.2022.00055","DOIUrl":null,"url":null,"abstract":"There have been frequent incidents of water intake blockage due to marine organisms, which pose a serious threat to the normal operation of nuclear power plants across the world. In order to avoid biological hazards for Nuclear Power Plants, we investigated the disaster-caused marine organism. In this work, we focus on the acetes, which is the main cause of the accident. By investigating the biological characteristics of acetes, we have established a mathematical model of the population dynamics of acetes. We have also utilized two deep learning methods, LSTM and Transformer, to predict the population density of acetes. Finally, we have also compared the two methods. As a result, we find that LSTM performs better and it can be used for data-based dynamical modeling in future work.","PeriodicalId":447862,"journal":{"name":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC55436.2022.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There have been frequent incidents of water intake blockage due to marine organisms, which pose a serious threat to the normal operation of nuclear power plants across the world. In order to avoid biological hazards for Nuclear Power Plants, we investigated the disaster-caused marine organism. In this work, we focus on the acetes, which is the main cause of the accident. By investigating the biological characteristics of acetes, we have established a mathematical model of the population dynamics of acetes. We have also utilized two deep learning methods, LSTM and Transformer, to predict the population density of acetes. Finally, we have also compared the two methods. As a result, we find that LSTM performs better and it can be used for data-based dynamical modeling in future work.
基于深度学习的核电站生物危害生物种群预测
由于海洋生物引起的进水堵塞事件时有发生,严重威胁着世界范围内核电站的正常运行。为了避免核电站的生物危害,我们调查了造成灾害的海洋生物。在这项工作中,我们重点关注的是造成事故的主要原因。通过对蚁群生物学特性的研究,建立了蚁群动态的数学模型。我们还使用了LSTM和Transformer两种深度学习方法来预测物种的种群密度。最后,对两种方法进行了比较。结果表明,LSTM具有更好的性能,可以在今后的工作中用于基于数据的动态建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信