Logarithmic-domain array interpolation for improved DOA estimation in automotive radars

Seongwook Lee, Heonkyo Sim, Byeong-ho Lee, Y. Yoon, Seong-Cheol Kim
{"title":"Logarithmic-domain array interpolation for improved DOA estimation in automotive radars","authors":"Seongwook Lee, Heonkyo Sim, Byeong-ho Lee, Y. Yoon, Seong-Cheol Kim","doi":"10.23919/IRS.2017.8008129","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel array interpolation method in logarithmic domain for enhanced direction of arrival (DOA) estimation. Array interpolation techniques are broadly utilized in the DOA estimation for achieving better angular resolution. Generally, to generate interpolated array elements from original array elements, the method of linear least squares (LLS) has been used. When we use the LLS method, the interpolated array elements are formulated by linear combinations of the original array elements. Therefore, amplitudes of the interpolated array elements may not be equivalent to those of the original array elements. In addition, through a transformation matrix from the LLS method, phases of the interpolated array elements are not precisely generated. For the DOA estimation, phase information of interpolated array elements is important. Therefore, we propose a novel array transformation matrix for generating accurate phases of the interpolated array elements to improve the DOA estimation performance. Verifying from simulation and measurement results, our method shows much better angular resolution and estimation accuracy.","PeriodicalId":430241,"journal":{"name":"2017 18th International Radar Symposium (IRS)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2017.8008129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel array interpolation method in logarithmic domain for enhanced direction of arrival (DOA) estimation. Array interpolation techniques are broadly utilized in the DOA estimation for achieving better angular resolution. Generally, to generate interpolated array elements from original array elements, the method of linear least squares (LLS) has been used. When we use the LLS method, the interpolated array elements are formulated by linear combinations of the original array elements. Therefore, amplitudes of the interpolated array elements may not be equivalent to those of the original array elements. In addition, through a transformation matrix from the LLS method, phases of the interpolated array elements are not precisely generated. For the DOA estimation, phase information of interpolated array elements is important. Therefore, we propose a novel array transformation matrix for generating accurate phases of the interpolated array elements to improve the DOA estimation performance. Verifying from simulation and measurement results, our method shows much better angular resolution and estimation accuracy.
基于对数域阵列插值的汽车雷达DOA估计方法
本文提出了一种新的对数域阵列插值方法,用于增强到达方向估计。阵列插值技术被广泛应用于DOA估计中,以获得更好的角度分辨率。一般采用线性最小二乘法(LLS)从原始数组元素生成插值数组元素。当我们使用LLS方法时,插入的数组元素是由原始数组元素的线性组合来表示的。因此,插值后的数组元素的振幅可能不等于原始数组元素的振幅。此外,通过LLS方法的变换矩阵,不能精确地生成插值数组元素的相位。在DOA估计中,插值阵元的相位信息是很重要的。因此,我们提出了一种新的阵列变换矩阵,用于生成插值阵列元素的精确相位,以提高DOA估计性能。仿真和实测结果表明,该方法具有较好的角分辨率和估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信