Multi-objective cooperative neuro-evolution of recurrent neural networks for time series prediction

Rohitash Chandra
{"title":"Multi-objective cooperative neuro-evolution of recurrent neural networks for time series prediction","authors":"Rohitash Chandra","doi":"10.1109/CEC.2015.7256880","DOIUrl":null,"url":null,"abstract":"Cooperative coevolution is an evolutionary computation method which solves a problem by decomposing it into smaller subcomponents. Multi-objective optimization deals with conflicting objectives and produces multiple optimal solutions instead of a single global optimal solution. In previous work, a multi-objective cooperative co-evolutionary method was introduced for training feedforward neural networks on time series problems. In this paper, the same method is used for training recurrent neural networks. The proposed approach is tested on time series problems in which the different time-lags represent the different objectives. Multiple pre-processed datasets distinguished by their time-lags are used for training and testing. This results in the discovery of a single neural network that can correctly give predictions for data pre-processed using different time-lags. The method is tested on several benchmark time series problems on which it gives a competitive performance in comparison to the methods in the literature.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7256880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cooperative coevolution is an evolutionary computation method which solves a problem by decomposing it into smaller subcomponents. Multi-objective optimization deals with conflicting objectives and produces multiple optimal solutions instead of a single global optimal solution. In previous work, a multi-objective cooperative co-evolutionary method was introduced for training feedforward neural networks on time series problems. In this paper, the same method is used for training recurrent neural networks. The proposed approach is tested on time series problems in which the different time-lags represent the different objectives. Multiple pre-processed datasets distinguished by their time-lags are used for training and testing. This results in the discovery of a single neural network that can correctly give predictions for data pre-processed using different time-lags. The method is tested on several benchmark time series problems on which it gives a competitive performance in comparison to the methods in the literature.
时间序列预测递归神经网络的多目标协同神经进化
协同进化是一种通过将问题分解成更小的子组件来解决问题的进化计算方法。多目标优化处理相互冲突的目标,产生多个最优解,而不是单一的全局最优解。在前人的研究中,提出了一种多目标协同进化方法来训练时间序列问题的前馈神经网络。在本文中,同样的方法被用于训练递归神经网络。该方法在时间序列问题上进行了测试,其中不同的时滞代表不同的目标。使用多个预处理数据集来区分它们的时滞,用于训练和测试。这导致发现了一个单一的神经网络,它可以正确地对使用不同滞后时间预处理的数据进行预测。该方法在几个基准时间序列问题上进行了测试,与文献中的方法相比,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信