Indoor Localisation using Aroma Fingerprints: Comparing Nearest Neighbour Classification Accuracy using Different Distance Measures

G. Minaev, Philipp Müller, A. Visa, R. Piché
{"title":"Indoor Localisation using Aroma Fingerprints: Comparing Nearest Neighbour Classification Accuracy using Different Distance Measures","authors":"G. Minaev, Philipp Müller, A. Visa, R. Piché","doi":"10.1109/ICOSC.2018.8587811","DOIUrl":null,"url":null,"abstract":"Measurements from an ion mobility spectrometry electronic nose (eNose) can be used for distinguishing different rooms in indoor localisation. An earlier study showed that the Nearest Neighbour classifier with Euclidean distance for features provides reasonable accuracy under certain conditions. In this paper 66 alternative distance measures are compared to the Euclidean distance and principal component analysis (PCA) is applied to the data. PCA shows that the measurements on the various channels of the eNose are correlated and that using principal components 1, 2 and 4 increases the accuracy considerably. Furthermore, the experiments revealed three Pareto optimal distance measures that reduce the misclassification rate between 9-10% while using only 82-88% of the search time compared with Euclidean distance.","PeriodicalId":153985,"journal":{"name":"2018 7th International Conference on Systems and Control (ICSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2018.8587811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Measurements from an ion mobility spectrometry electronic nose (eNose) can be used for distinguishing different rooms in indoor localisation. An earlier study showed that the Nearest Neighbour classifier with Euclidean distance for features provides reasonable accuracy under certain conditions. In this paper 66 alternative distance measures are compared to the Euclidean distance and principal component analysis (PCA) is applied to the data. PCA shows that the measurements on the various channels of the eNose are correlated and that using principal components 1, 2 and 4 increases the accuracy considerably. Furthermore, the experiments revealed three Pareto optimal distance measures that reduce the misclassification rate between 9-10% while using only 82-88% of the search time compared with Euclidean distance.
利用香气指纹进行室内定位:比较不同距离度量下的最近邻分类精度
离子迁移率光谱电子鼻(eNose)的测量结果可用于区分室内定位中的不同房间。早期的研究表明,对特征进行欧式距离的最近邻分类器在一定条件下具有合理的准确率。本文将66种替代距离度量与欧几里得距离进行了比较,并对数据进行了主成分分析。主成分分析表明,各通道的测量值具有相关性,使用主成分1、2和4可以显著提高测量精度。此外,实验揭示了三种帕累托最优距离度量,与欧几里得距离相比,它们将错误分类率降低了9-10%,而搜索时间仅为82-88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信