Jacobian matrix singularity based pareto front identification for multi-objective problems

Brandon Brown, T. Singh, R. Rai
{"title":"Jacobian matrix singularity based pareto front identification for multi-objective problems","authors":"Brandon Brown, T. Singh, R. Rai","doi":"10.1109/ACC.2013.6580448","DOIUrl":null,"url":null,"abstract":"This paper presents a new structured method to effectively determine the complete boundary, including the Pareto frontier, of a multi-objective optimization problem. The proposed technique identifies the boundary in the cost space by systematically searching the design parameter space for points which make the Jacobian matrix of the cost vector singular. This corresponds to the identifying a manifold in parameter space which results in a reduced dimensional manifold in the cost space. Since the boundary of the cost space implies a reduced dimensional manifold, a systematic approach is now available for exact identification of the boundary in the cost space. The efficacy of the proposed method is demonstrated on one optimization and one optimal control problem, in this paper.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new structured method to effectively determine the complete boundary, including the Pareto frontier, of a multi-objective optimization problem. The proposed technique identifies the boundary in the cost space by systematically searching the design parameter space for points which make the Jacobian matrix of the cost vector singular. This corresponds to the identifying a manifold in parameter space which results in a reduced dimensional manifold in the cost space. Since the boundary of the cost space implies a reduced dimensional manifold, a systematic approach is now available for exact identification of the boundary in the cost space. The efficacy of the proposed method is demonstrated on one optimization and one optimal control problem, in this paper.
基于雅可比矩阵奇异性的pareto前辨识多目标问题
本文提出了一种新的结构化方法来有效地确定多目标优化问题的完整边界,包括Pareto边界。该方法通过系统地在设计参数空间中搜索使代价向量的雅可比矩阵奇异的点来识别代价空间中的边界。这对应于在参数空间中识别流形,从而在成本空间中得到降维流形。由于成本空间的边界意味着降维流形,现在可以使用系统的方法来精确识别成本空间中的边界。在一个优化问题和一个最优控制问题上证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信