Feature selection using rough set theory for object-oriented classification of remote sensing imagery

Guifeng Zhang, Lina Yi
{"title":"Feature selection using rough set theory for object-oriented classification of remote sensing imagery","authors":"Guifeng Zhang, Lina Yi","doi":"10.1109/Geoinformatics.2012.6270343","DOIUrl":null,"url":null,"abstract":"In object-oriented remote sensing imagery classification, numerous spectral, texture, shape and contextual features can be derived and used to discriminate classes and produce finer map. The high-dimensional features may induce Hughes phenomenon that classification accuracy decreases with more features involved. To improve the classification accuracy and efficiency, a hybrid feature selection method combined the relative attribute reduction and the significance estimation of features is proposed. This method can efficiently select features and solve the problems of combination explosion. Object-oriented classification of Quickbird image shows the selected features can correctly distinguish most of the objects with an overall accuracy of 86%.","PeriodicalId":259976,"journal":{"name":"2012 20th International Conference on Geoinformatics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Geoinformatics.2012.6270343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In object-oriented remote sensing imagery classification, numerous spectral, texture, shape and contextual features can be derived and used to discriminate classes and produce finer map. The high-dimensional features may induce Hughes phenomenon that classification accuracy decreases with more features involved. To improve the classification accuracy and efficiency, a hybrid feature selection method combined the relative attribute reduction and the significance estimation of features is proposed. This method can efficiently select features and solve the problems of combination explosion. Object-oriented classification of Quickbird image shows the selected features can correctly distinguish most of the objects with an overall accuracy of 86%.
基于粗糙集理论的面向对象遥感图像分类特征选择
在面向对象的遥感图像分类中,可以导出大量的光谱、纹理、形状和上下文特征,并利用这些特征进行分类,生成更精细的地图。高维特征会诱发休斯现象,即特征越多分类准确率越低。为了提高分类精度和效率,提出了一种将相对属性约简与特征显著性估计相结合的混合特征选择方法。该方法可以有效地选择特征,解决组合爆炸问题。Quickbird图像的面向对象分类表明,所选择的特征能够正确区分大部分目标,总体准确率为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信