FPGA-based Cloudification of ECG Signal Diagnosis Acceleration

Dongkyu Lee, Seungmin Lee, Daejin Park
{"title":"FPGA-based Cloudification of ECG Signal Diagnosis Acceleration","authors":"Dongkyu Lee, Seungmin Lee, Daejin Park","doi":"10.1109/ICUFN49451.2021.9528812","DOIUrl":null,"url":null,"abstract":"Recently, studies to analyze heart disease using ECG signals are emerging. The proposed platform generates multiple reference signals trained for individuals in real time by reducing the learning time. The data in the cluster is compressed by linear approximation to speed up diagnosis and reduce memory usage, allowing more diagnosis to be performed with limited resources. Platforms using FPGA can accelerate ECG signal diagnosis by adding hardware. As a result of diagnosing ECG signals of 10 people using the processor and accelerator, the execution time when using the accelerator was 71% lower than that when using the processor.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, studies to analyze heart disease using ECG signals are emerging. The proposed platform generates multiple reference signals trained for individuals in real time by reducing the learning time. The data in the cluster is compressed by linear approximation to speed up diagnosis and reduce memory usage, allowing more diagnosis to be performed with limited resources. Platforms using FPGA can accelerate ECG signal diagnosis by adding hardware. As a result of diagnosing ECG signals of 10 people using the processor and accelerator, the execution time when using the accelerator was 71% lower than that when using the processor.
基于fpga的心电信号云化加速诊断
近年来,利用心电信号分析心脏病的研究正在兴起。该平台通过减少学习时间,为个体实时生成多个训练的参考信号。集群中的数据通过线性近似压缩,加快诊断速度,减少内存使用,允许在有限的资源下执行更多的诊断。采用FPGA的平台可以通过增加硬件来加快心电信号的诊断速度。对使用处理器和加速器的10人的心电信号进行诊断,使用加速器的执行时间比使用处理器的执行时间低71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信