Jiafeng Wang, Ming Liu, Xiaokang Yin, Yuhao Zhao, Shengli Liu
{"title":"Semi-supervised Malicious Traffic Detection with Improved Wasserstein Generative Adversarial Network with Gradient Penalty","authors":"Jiafeng Wang, Ming Liu, Xiaokang Yin, Yuhao Zhao, Shengli Liu","doi":"10.1109/IAEAC54830.2022.9929762","DOIUrl":null,"url":null,"abstract":"With the development of artificial intelligence, malicious traffic detection technology based on deep learning has become mainstream with its powerful detection performance. Most existing deep learning-based detection methods require sufficient labeled data to train classifiers. But much labeled traffic is difficult to obtain in practical applications. To solve this problem, we propose and implement a semi-supervised malicious traffic detection method based on improved Wasserstein Generative Adversarial Network with Gradient Penalized (WGAN-GP), denoted as SEMI-WGAN-GP. First, we construct a pseudo- feature map (PFM) for each stream in the dataset using the time-series properties of consecutive packets in a given stream. Second, we fix the generator and only train the discriminator on a few labeled PFMs, which obtain a discriminator that can distinguish malicious from benign traffic. Finally, the generator and discriminator are trained unsupervisedly in the adversarial setting, which allows the discriminator to improve detection performance by generator-generated PFMs. Experiments on the publicly available UNSW-NB15 dataset demonstrate that SEMI-WGAN-GP can achieve 90.53% accuracy using a few labeled samples (20% of the samples in the dataset are marked), exceeding the 79.92% and 84.94% of fully supervised multilayer perceptron network (MLP) and 2- dimensional convolutional neural network (2DCNN). In addition, SEMI-WGAN-GP also achieves better detection performance than SEMI-DCGAN by generating better samples.","PeriodicalId":349113,"journal":{"name":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC54830.2022.9929762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
With the development of artificial intelligence, malicious traffic detection technology based on deep learning has become mainstream with its powerful detection performance. Most existing deep learning-based detection methods require sufficient labeled data to train classifiers. But much labeled traffic is difficult to obtain in practical applications. To solve this problem, we propose and implement a semi-supervised malicious traffic detection method based on improved Wasserstein Generative Adversarial Network with Gradient Penalized (WGAN-GP), denoted as SEMI-WGAN-GP. First, we construct a pseudo- feature map (PFM) for each stream in the dataset using the time-series properties of consecutive packets in a given stream. Second, we fix the generator and only train the discriminator on a few labeled PFMs, which obtain a discriminator that can distinguish malicious from benign traffic. Finally, the generator and discriminator are trained unsupervisedly in the adversarial setting, which allows the discriminator to improve detection performance by generator-generated PFMs. Experiments on the publicly available UNSW-NB15 dataset demonstrate that SEMI-WGAN-GP can achieve 90.53% accuracy using a few labeled samples (20% of the samples in the dataset are marked), exceeding the 79.92% and 84.94% of fully supervised multilayer perceptron network (MLP) and 2- dimensional convolutional neural network (2DCNN). In addition, SEMI-WGAN-GP also achieves better detection performance than SEMI-DCGAN by generating better samples.