Rapidly-exploring random tree based memory efficient motion planning

Olzhas Adiyatov, H. A. Varol
{"title":"Rapidly-exploring random tree based memory efficient motion planning","authors":"Olzhas Adiyatov, H. A. Varol","doi":"10.1109/ICMA.2013.6617944","DOIUrl":null,"url":null,"abstract":"This paper presents a modified version of the RRT* motion planning algorithm, which limits the memory required for storing the tree. We run the RRT* algorithm until the tree has grown to a predefined number of nodes and afterwards we remove a weak node whenever a high performance node is added. A simple two-dimensional navigation problem is used to show the operation of the algorithm. The algorithm was also applied to a high-dimensional redundant robot manipulation problem to show the efficacy. The results show that our algorithm outperforms RRT and comes close to RRT* with respect to the optimality of returned path, while needing much less number of nodes stored in the tree.","PeriodicalId":335884,"journal":{"name":"2013 IEEE International Conference on Mechatronics and Automation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2013.6617944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

This paper presents a modified version of the RRT* motion planning algorithm, which limits the memory required for storing the tree. We run the RRT* algorithm until the tree has grown to a predefined number of nodes and afterwards we remove a weak node whenever a high performance node is added. A simple two-dimensional navigation problem is used to show the operation of the algorithm. The algorithm was also applied to a high-dimensional redundant robot manipulation problem to show the efficacy. The results show that our algorithm outperforms RRT and comes close to RRT* with respect to the optimality of returned path, while needing much less number of nodes stored in the tree.
快速探索基于随机树的内存高效运动规划
本文提出了一种改进的RRT*运动规划算法,该算法限制了存储树所需的内存。我们运行RRT*算法,直到树增长到预定义的节点数量,然后在添加高性能节点时删除弱节点。用一个简单的二维导航问题来说明该算法的操作。将该算法应用于一个高维冗余机器人操作问题,验证了算法的有效性。结果表明,我们的算法优于RRT,并且在返回路径的最优性方面接近RRT*,而需要在树中存储的节点数量要少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信