Toward a Selective Detection of Ethanol by Perspiration

B. Lawson, K. Aguir, Z. Haddi, T. Fiorido, R. Bouchakour, M. Bendahan
{"title":"Toward a Selective Detection of Ethanol by Perspiration","authors":"B. Lawson, K. Aguir, Z. Haddi, T. Fiorido, R. Bouchakour, M. Bendahan","doi":"10.1109/ICSENS.2018.8589599","DOIUrl":null,"url":null,"abstract":"An average proportion of 1% of total alcohol consumed by humans is eliminated through the skin, thus causing the increase of ethanol vapor concentration emitted by the skin [1]. However, one of the major interferences of ethanol detection on the skin is the acetone. Skin acetone is generated from a natural metabolic intermediate of endogenous lipolysis in human and is considered as biomarker of ketotic state of diabetic [2]. Here, we propose to improve the ethanol selectivity of our tin dioxide sensors by using multivariate analysis techniques such as the Principal Component Analysis (PCA). This paper describes the rapid and accurate identification of different compounds such as ethanol, acetone and humidity due to this method in order to recognize ethanol in perspiration.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An average proportion of 1% of total alcohol consumed by humans is eliminated through the skin, thus causing the increase of ethanol vapor concentration emitted by the skin [1]. However, one of the major interferences of ethanol detection on the skin is the acetone. Skin acetone is generated from a natural metabolic intermediate of endogenous lipolysis in human and is considered as biomarker of ketotic state of diabetic [2]. Here, we propose to improve the ethanol selectivity of our tin dioxide sensors by using multivariate analysis techniques such as the Principal Component Analysis (PCA). This paper describes the rapid and accurate identification of different compounds such as ethanol, acetone and humidity due to this method in order to recognize ethanol in perspiration.
汗法选择性检测乙醇的研究
人体消耗的酒精总量中,平均有1%通过皮肤排出,从而导致皮肤释放的乙醇蒸气浓度增加[1]。然而,乙醇检测对皮肤的主要干扰之一是丙酮。皮肤丙酮是人体内源性脂肪分解的天然代谢中间体,被认为是糖尿病酮症状态的生物标志物[2]。在这里,我们建议通过使用多元分析技术,如主成分分析(PCA)来提高我们的二氧化锡传感器的乙醇选择性。本文介绍了该方法对不同化合物如乙醇、丙酮和湿度的快速准确鉴定,以识别汗液中的乙醇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信