Flexibility-based anti-islanding protection of a microgrid integrated with power grid

A. Haidar, Al-Khalid bin Hj Othman, L. Lopes
{"title":"Flexibility-based anti-islanding protection of a microgrid integrated with power grid","authors":"A. Haidar, Al-Khalid bin Hj Othman, L. Lopes","doi":"10.1109/SEGE.2017.8052773","DOIUrl":null,"url":null,"abstract":"The widespread adoption of Renewable Energy Resources (RER) and Plug-in Electric Vehicles (PEVs) in distribution systems has achieved a substantial energy share, allowing the microgrid to participate in the open market. In fact, the high penetrations of RER and PEVs have increased the importance of impact assessment involving system protection. A framework is presented in this paper for modeling the combined operations of RER based solar Photovoltaic (PV) systems and PEVs in a microgrid integrated with power grid. The paper also proposes a fault current limiter connected in parallel (anti-islanding protection) with the circuit breaker in the point of common coupling (PCC), thus providing current bypass circuit during abnormal conditions. The concept of the proposed scheme is validated under various operating conditions using a 24-hourly dynamic simulation. The results demonstrate the effectiveness of the proposed approach.","PeriodicalId":404327,"journal":{"name":"2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEGE.2017.8052773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The widespread adoption of Renewable Energy Resources (RER) and Plug-in Electric Vehicles (PEVs) in distribution systems has achieved a substantial energy share, allowing the microgrid to participate in the open market. In fact, the high penetrations of RER and PEVs have increased the importance of impact assessment involving system protection. A framework is presented in this paper for modeling the combined operations of RER based solar Photovoltaic (PV) systems and PEVs in a microgrid integrated with power grid. The paper also proposes a fault current limiter connected in parallel (anti-islanding protection) with the circuit breaker in the point of common coupling (PCC), thus providing current bypass circuit during abnormal conditions. The concept of the proposed scheme is validated under various operating conditions using a 24-hourly dynamic simulation. The results demonstrate the effectiveness of the proposed approach.
基于柔性的微网并网防孤岛保护
可再生能源(RER)和插电式电动汽车(pev)在配电系统中的广泛采用已经取得了相当大的能源份额,使微电网能够参与公开市场。事实上,RER和pev的高穿透性增加了涉及系统保护的影响评估的重要性。本文提出了一个基于RER的太阳能光伏系统和pev在与电网集成的微电网中联合运行的建模框架。本文还提出了一种故障限流器与断路器在共偶点并联(防孤岛保护),在异常情况下提供电流旁路电路。通过24小时动态模拟,在各种运行条件下验证了所提出方案的概念。结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信