Inducing a lexicon of sociolinguistic variables from code-mixed text

NUT@EMNLP Pub Date : 2018-11-01 DOI:10.18653/v1/W18-6101
Philippa Shoemark, James P. Kirby, S. Goldwater
{"title":"Inducing a lexicon of sociolinguistic variables from code-mixed text","authors":"Philippa Shoemark, James P. Kirby, S. Goldwater","doi":"10.18653/v1/W18-6101","DOIUrl":null,"url":null,"abstract":"Sociolinguistics is often concerned with how variants of a linguistic item (e.g., nothing vs. nothin’) are used by different groups or in different situations. We introduce the task of inducing lexical variables from code-mixed text: that is, identifying equivalence pairs such as (football, fitba) along with their linguistic code (football→British, fitba→Scottish). We adapt a framework for identifying gender-biased word pairs to this new task, and present results on three different pairs of English dialects, using tweets as the code-mixed text. Our system achieves precision of over 70% for two of these three datasets, and produces useful results even without extensive parameter tuning. Our success in adapting this framework from gender to language variety suggests that it could be used to discover other types of analogous pairs as well.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-6101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Sociolinguistics is often concerned with how variants of a linguistic item (e.g., nothing vs. nothin’) are used by different groups or in different situations. We introduce the task of inducing lexical variables from code-mixed text: that is, identifying equivalence pairs such as (football, fitba) along with their linguistic code (football→British, fitba→Scottish). We adapt a framework for identifying gender-biased word pairs to this new task, and present results on three different pairs of English dialects, using tweets as the code-mixed text. Our system achieves precision of over 70% for two of these three datasets, and produces useful results even without extensive parameter tuning. Our success in adapting this framework from gender to language variety suggests that it could be used to discover other types of analogous pairs as well.
从语码混合文本中归纳社会语言学变量词典
社会语言学通常关注的是一个语言项目的变体(例如,nothing和nothin’)如何被不同的群体或在不同的情况下使用。我们介绍了从代码混合文本中归纳词汇变量的任务:即识别等价对,如(football, fitba)及其语言代码(football→British, fitba→Scottish)。我们采用了一个框架来识别有性别偏见的词对,并在三种不同的英语方言对上展示了结果,使用tweet作为代码混合文本。我们的系统对这三个数据集中的两个达到了超过70%的精度,并且即使没有广泛的参数调整也能产生有用的结果。我们成功地将这一框架从性别调整到语言多样性,这表明它也可以用来发现其他类型的类似对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信