Estimating Story Points from Issue Reports

S. Porru, Alessandro Murgia, S. Demeyer, M. Marchesi, R. Tonelli
{"title":"Estimating Story Points from Issue Reports","authors":"S. Porru, Alessandro Murgia, S. Demeyer, M. Marchesi, R. Tonelli","doi":"10.1145/2972958.2972959","DOIUrl":null,"url":null,"abstract":"Estimating the effort of software engineering tasks is notoriously hard but essential for project planning. The agile community often adopts issue reports to describe tasks, and story points to estimate task effort. In this paper, we propose a machine learning classifier for estimating the story points required to address an issue. Through empirical evaluation on one industrial project and eight open source projects, we demonstrate that such classifier is feasible. We show that ---after an initial training on over 300 issue reports--- the classifier estimates a new issue in less than 15 seconds with a mean magnitude of relative error between 0.16 and 0.61. In addition, issue type, summary, description, and related components prove to be project dependent features pivotal for story point estimation.","PeriodicalId":176848,"journal":{"name":"Proceedings of the The 12th International Conference on Predictive Models and Data Analytics in Software Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the The 12th International Conference on Predictive Models and Data Analytics in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2972958.2972959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Estimating the effort of software engineering tasks is notoriously hard but essential for project planning. The agile community often adopts issue reports to describe tasks, and story points to estimate task effort. In this paper, we propose a machine learning classifier for estimating the story points required to address an issue. Through empirical evaluation on one industrial project and eight open source projects, we demonstrate that such classifier is feasible. We show that ---after an initial training on over 300 issue reports--- the classifier estimates a new issue in less than 15 seconds with a mean magnitude of relative error between 0.16 and 0.61. In addition, issue type, summary, description, and related components prove to be project dependent features pivotal for story point estimation.
从问题报告中估计故事点
估计软件工程任务的工作量是出了名的困难,但对项目规划却是必不可少的。敏捷社区经常采用问题报告来描述任务,并使用事例点来评估任务的工作量。在本文中,我们提出了一个机器学习分类器,用于估计解决问题所需的故事点。通过对1个工业项目和8个开源项目的实证评估,验证了该分类器的可行性。我们表明,在对超过300个问题报告进行初始训练后,分类器在不到15秒的时间内估计出一个新问题,平均相对误差在0.16到0.61之间。此外,问题类型、摘要、描述和相关组件被证明是依赖于项目的特征,对于故事点评估至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信