Dynamic Laplacian eigenmaps for process monitoring

Jingxin Zhang, Maoyin Chen, Donghua Zhou
{"title":"Dynamic Laplacian eigenmaps for process monitoring","authors":"Jingxin Zhang, Maoyin Chen, Donghua Zhou","doi":"10.1109/SAFEPROCESS45799.2019.9213448","DOIUrl":null,"url":null,"abstract":"This paper proposes a process monitoring approach for dynamic systems based on Lapalacian eigenmaps. Aimed at the “out of sample” issue, we adopt radial basis function neural network instead of the traditional linear transformation, which is able to discover the accurate nonlinear functional relationship between the raw data and the low-dimensional data. Besides, in order to utilize temporal information, time-lagged embedding is employed to extract more meaningful information and dynamic characteristics. Thus, the proposed approach can be actually applied to nonlinear dynamic systems. Eventually, a numerical case demonstrates the effectiveness of the proposed approach.","PeriodicalId":353946,"journal":{"name":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","volume":"141 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a process monitoring approach for dynamic systems based on Lapalacian eigenmaps. Aimed at the “out of sample” issue, we adopt radial basis function neural network instead of the traditional linear transformation, which is able to discover the accurate nonlinear functional relationship between the raw data and the low-dimensional data. Besides, in order to utilize temporal information, time-lagged embedding is employed to extract more meaningful information and dynamic characteristics. Thus, the proposed approach can be actually applied to nonlinear dynamic systems. Eventually, a numerical case demonstrates the effectiveness of the proposed approach.
过程监控的动态拉普拉斯特征映射
提出了一种基于Lapalacian特征映射的动态系统过程监控方法。针对“样本外”问题,采用径向基函数神经网络代替传统的线性变换,能够准确发现原始数据与低维数据之间的非线性函数关系。此外,为了充分利用时间信息,采用了时滞嵌入的方法提取更有意义的信息和动态特征。因此,所提出的方法可以实际应用于非线性动态系统。最后,通过数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信