Perceptual-based CNN model for watercolor mixing prediction

Ya-Bo Huang, Mei-Yun Chen, M. Ouhyoung
{"title":"Perceptual-based CNN model for watercolor mixing prediction","authors":"Ya-Bo Huang, Mei-Yun Chen, M. Ouhyoung","doi":"10.1145/3230744.3230785","DOIUrl":null,"url":null,"abstract":"In the poster, we propose a model to predict the mixture of water-color pigments using convolutional neural networks (CNN). With a watercolor dataset, we train our model to minimize the loss function of sRGB differences. In metric of color difference ΔELab, our model achieves 88.7 % of data that ΔELab < 5 on the test set, which means the difference can not easily be detected by human eye. In addition, an interesting phenomenon is found; Even if the reflectance curve of the predicted color is not as smooth as the ground truth curve, the RGB color is still close to the ground truth.","PeriodicalId":226759,"journal":{"name":"ACM SIGGRAPH 2018 Posters","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2018 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230744.3230785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the poster, we propose a model to predict the mixture of water-color pigments using convolutional neural networks (CNN). With a watercolor dataset, we train our model to minimize the loss function of sRGB differences. In metric of color difference ΔELab, our model achieves 88.7 % of data that ΔELab < 5 on the test set, which means the difference can not easily be detected by human eye. In addition, an interesting phenomenon is found; Even if the reflectance curve of the predicted color is not as smooth as the ground truth curve, the RGB color is still close to the ground truth.
基于感知的CNN水彩混合预测模型
在海报中,我们提出了一个使用卷积神经网络(CNN)预测水彩颜料混合物的模型。使用水彩数据集,我们训练我们的模型以最小化sRGB差异的损失函数。在色差度量ΔELab中,我们的模型在测试集上达到了88.7%的ΔELab < 5的数据,这意味着人眼不容易检测到色差。此外,还发现了一个有趣的现象;即使预测颜色的反射率曲线不如地面真值曲线平滑,RGB颜色仍然接近地面真值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信