An STL-based Approach to Resilient Control for Cyber-Physical Systems

Hongkai Chen, S. Smolka, Nicola Paoletti, Shanny Lin
{"title":"An STL-based Approach to Resilient Control for Cyber-Physical Systems","authors":"Hongkai Chen, S. Smolka, Nicola Paoletti, Shanny Lin","doi":"10.1145/3575870.3587119","DOIUrl":null,"url":null,"abstract":"We present ResilienC, a framework for resilient control of Cyber-Physical Systems subject to STL-based requirements. ResilienC utilizes a recently developed formalism for specifying CPS resiliency in terms of sets of (rec, dur) real-valued pairs, where rec represents the system’s capability to rapidly recover from a property violation (recoverability), and dur is reflective of its ability to avoid violations post-recovery (durability). We define the resilient STL control problem as one of multi-objective optimization, where the recoverability and durability of the desired STL specification are maximized. When neither objective is prioritized over the other, the solution to the problem is a set of Pareto-optimal system trajectories. We present a precise solution method to the resilient STL control problem using a mixed-integer linear programming encoding and an a posteriori ϵ -constraint approach for efficiently retrieving the complete set of optimally resilient solutions. In ResilienC, at each time-step, the optimal control action selected from the set of Pareto-optimal solutions by a Decision Maker strategy realizes a form of Model Predictive Control. We demonstrate the practical utility of the ResilienC framework on two significant case studies: autonomous vehicle lane keeping and deadline-driven, multi-region package delivery.","PeriodicalId":426801,"journal":{"name":"Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575870.3587119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present ResilienC, a framework for resilient control of Cyber-Physical Systems subject to STL-based requirements. ResilienC utilizes a recently developed formalism for specifying CPS resiliency in terms of sets of (rec, dur) real-valued pairs, where rec represents the system’s capability to rapidly recover from a property violation (recoverability), and dur is reflective of its ability to avoid violations post-recovery (durability). We define the resilient STL control problem as one of multi-objective optimization, where the recoverability and durability of the desired STL specification are maximized. When neither objective is prioritized over the other, the solution to the problem is a set of Pareto-optimal system trajectories. We present a precise solution method to the resilient STL control problem using a mixed-integer linear programming encoding and an a posteriori ϵ -constraint approach for efficiently retrieving the complete set of optimally resilient solutions. In ResilienC, at each time-step, the optimal control action selected from the set of Pareto-optimal solutions by a Decision Maker strategy realizes a form of Model Predictive Control. We demonstrate the practical utility of the ResilienC framework on two significant case studies: autonomous vehicle lane keeping and deadline-driven, multi-region package delivery.
基于stl的网络物理系统弹性控制方法
我们提出了一个基于stl需求的网络物理系统弹性控制框架——ResilienC。ResilienC利用最近开发的一种形式,以(rec, dur)实值对的集合来指定CPS弹性,其中rec表示系统从属性违规中快速恢复的能力(可恢复性),而dur反映了其在恢复后避免违规的能力(持久性)。我们将弹性STL控制问题定义为一个多目标优化问题,其中期望的STL规格的可恢复性和耐久性是最大的。当两个目标都没有优先于另一个目标时,问题的解决方案是一组帕累托最优系统轨迹。我们提出了一种弹性STL控制问题的精确解方法,使用混合整数线性规划编码和后验λ约束方法来有效地检索最优弹性解的完整集。在ResilienC中,在每个时间步,决策者策略从pareto最优解集中选择的最优控制行为实现了一种模型预测控制。我们在两个重要的案例研究中展示了ResilienC框架的实际效用:自动驾驶车辆车道保持和截止日期驱动的多地区包裹递送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信