Hongkai Chen, S. Smolka, Nicola Paoletti, Shanny Lin
{"title":"An STL-based Approach to Resilient Control for Cyber-Physical Systems","authors":"Hongkai Chen, S. Smolka, Nicola Paoletti, Shanny Lin","doi":"10.1145/3575870.3587119","DOIUrl":null,"url":null,"abstract":"We present ResilienC, a framework for resilient control of Cyber-Physical Systems subject to STL-based requirements. ResilienC utilizes a recently developed formalism for specifying CPS resiliency in terms of sets of (rec, dur) real-valued pairs, where rec represents the system’s capability to rapidly recover from a property violation (recoverability), and dur is reflective of its ability to avoid violations post-recovery (durability). We define the resilient STL control problem as one of multi-objective optimization, where the recoverability and durability of the desired STL specification are maximized. When neither objective is prioritized over the other, the solution to the problem is a set of Pareto-optimal system trajectories. We present a precise solution method to the resilient STL control problem using a mixed-integer linear programming encoding and an a posteriori ϵ -constraint approach for efficiently retrieving the complete set of optimally resilient solutions. In ResilienC, at each time-step, the optimal control action selected from the set of Pareto-optimal solutions by a Decision Maker strategy realizes a form of Model Predictive Control. We demonstrate the practical utility of the ResilienC framework on two significant case studies: autonomous vehicle lane keeping and deadline-driven, multi-region package delivery.","PeriodicalId":426801,"journal":{"name":"Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575870.3587119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present ResilienC, a framework for resilient control of Cyber-Physical Systems subject to STL-based requirements. ResilienC utilizes a recently developed formalism for specifying CPS resiliency in terms of sets of (rec, dur) real-valued pairs, where rec represents the system’s capability to rapidly recover from a property violation (recoverability), and dur is reflective of its ability to avoid violations post-recovery (durability). We define the resilient STL control problem as one of multi-objective optimization, where the recoverability and durability of the desired STL specification are maximized. When neither objective is prioritized over the other, the solution to the problem is a set of Pareto-optimal system trajectories. We present a precise solution method to the resilient STL control problem using a mixed-integer linear programming encoding and an a posteriori ϵ -constraint approach for efficiently retrieving the complete set of optimally resilient solutions. In ResilienC, at each time-step, the optimal control action selected from the set of Pareto-optimal solutions by a Decision Maker strategy realizes a form of Model Predictive Control. We demonstrate the practical utility of the ResilienC framework on two significant case studies: autonomous vehicle lane keeping and deadline-driven, multi-region package delivery.